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NEURAL NETWORK DEVELOPMENT FOR AUTOMATIC IDENTIFICATION OF THE 
ENDPOINT OF DRYING BARLEY IN BULK 

 

Summary 
 

A thesis was proved that it is possible an automatic endpoint determination of drying barley in bulk, 1.2 meter’s deep, based 
on a neural network, using a continuous on-line measurement of atmospheric air temperature and relative humidity, plenum 
air temperature and grain temperature in selected locations inside the bed - in situations in which drying air temperature 
and relative humidity change stochastically. The usefulness of individual input variables characterising the process as well 
as their influence on the quality of the obtained model were analysed. Several different topologies of the developed models 
were compared and the RBF type networks were selected as the best ones. The developed networks are characterised by 
a high, ranging from 93.3 to 99.6%, correctness of case assignment to the recognised classes in the course of the identifica-
tion process and a high capability to generalise the analysed data. 
 
 

WYKORZYSTANIE SZTUCZNYCH SIECI NEURONOWCYH DO AUTOMATYCZNEJ 
IDENTYFIKACJI ZAKOŃCZENIA NISKOTEMPERATUROWEGO SUSZENIA 

JĘCZMIENIA 
 

Streszczenie 
 

W pracy potwierdzono moŜliwość automatycznej identyfikacji zakończenia procesu niskotemperaturowego suszenia ziarna 
jęczmienia w nieruchomej warstwie o grubości 1,2 m z zastosowaniem sztucznej sieci neuronowej. Następujące wielkości 
były mierzone w sposób ciągły „on-line”: temperatura i wilgotność względna powietrza atmosferycznego, temperatura 
spręŜonego powietrza oraz temperatura nasion w wybranych miejscach wewnątrz komory – w sytuacji, w której temperatu-
ra powietrza suszącego i wilgotność względna zmieniały się stochastycznie. Przeanalizowano przydatność poszczególnych 
zmiennych wejściowych charakteryzujących proces jak równieŜ ich wpływ na jakość otrzymanego modelu. Porównano rów-
nieŜ róŜne topologie otrzymanych sieci. Jako najlepsze wytypowano sieci typu RBF. Znalezione sieci charakteryzowały się 
duŜą (w granicach 93,3–99,6%), poprawnością przypisywania przypadków do rozpoznawanych klas oraz wysokiej zdolno-
ści do generalizacji analizowanych danych 
 
 
1. Introduction 
 
 Based on some selected brain properties and employing 
only the most important principles of its activities, artificial 
neural networks (ANN) make it possible to solve very 
complex problems [4]. Their significant advantage is the 
ability to learn and generalise the acquired knowledge 
which they draw from databases provided by the user. Neu-
ral networks are characterised by inductive inference, i.e. 
they do not explain causes of the examined phenomena and, 
therefore, are employed widely in the situations when the 
user is in a position to identify the target and give an exam-
ple how to reach it, although he/she need not be quite sure 
with regard to the correlations between the input factor and 
the obtained results [7].  
 Neural networks are used successfully all over the world 
to control and model a wide range of different processes 
connected with food production which are characterised by 
complexity, nonlinearity and a large quantity of data. They 
are employed, among others, in the modelling of extrusion 
processes, prediction of the freezing time of food products 
of different sizes or to control fermentation termination [3]. 
Neural networks are also utilised during the drying of vari-
ous agricultural articles. Using ANN, Bakhshiani et al. [1] 
modelled the drying kinetics of tomato slices taking into 
consideration the temperature and drying time as well as the 
thickness of slices. Białobrzeski et al. [2] employed neural 

modelling to investigate changes of the temperature field of 
wheat stored in a grain silo. The RBF-type network was 
used to calculate the convective heat-transfer coefficient 
into the silo walls. 
 Drying of grain in bulk involves forced ventilation, by a 
fan, of a deep stationary bed of grain. The method utilizes 
the drying potential of the atmospheric air and the ventilat-
ing air is heated only in exceptional conditions when the 
drying potential is lacking, but even then the air is heated 
up only by a few degrees Celsius [5]. The heat and mass 
transfer in this process is not smooth, but is subjected to 
substantial disturbances from random fluctuations in the 
ambient air temperature and humidity [9]. This is probably 
the reason why control devices used to supervise drying ce-
reals in bulk are not capable to identify the drying endpoint 
[11]. Such identification can be done manually using a 
grain moisture content tester. Manual supervision of drying 
progress, apart from being costly, depends on the operators’ 
skill which may result in a decrease of grain quality. To 
solve this problem, Ryniecki et al. [8] developed an auto-
matic determination of near-ambient barley drying in static 
deep beds, based on a correlation to calculate grain mois-
ture content of the top layer, using a continuous on-line 
measurement of relative humidity (RH) and temperature of 
outlet air.  
 One objective of the described investigations was to de-
velop a method of identification drying endpoint which 
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could eliminate necessity of the difficult measurement of 
air RH inside a dryer. The authors intend to verify whether 
it is possible to build a neural network that could identify 
the endpoint of drying barley in bulk on the basis of the in-
formation obtained from sensors that can measure auto-
matically and continuously atmospheric air temperature and 
RH, plenum air temperature and grain temperature in se-
lected locations inside the bed in situations in which drying 
air temperature and RH change stochastically. 
 
2. Material and methods 
2.1. Experiments on Drying Grain in Bulk 
 
 The experimental material used for drying comprised 
barley grain cv. Annabell of 12-14% moisture content har-
vested in 2005 near Poznań, Poland. Barley grain was arti-
ficially wetted before the trial. For that purpose, it was 
sprinkled with water of specific weight and left for  
24 hours in a facility in which the temperature was 8°C. Af-
ter this treatment, the grain moisture content (GMC) in dif-
ferent trials ranged from 18 to 19.3%. The GMC deter-
mined with the assistance of the electronic moisture ana-
lyzer “Sartorius MA 30”, Germany was treated as the refer-
ence (based on a precision weighing balance applying dry-
ing of 5 g sample at the temperature of 125°C to constant 
mass). This moisture analyzer was checked using the oven 
method (PN-ISO 712: 2002). The measuring accuracy of the 
analyzer is 0.05% w.b. (wet basis). 
 In order to obtain important, from the point of view of 
developing a neural network, information a series of six ex-
periments was conducted. The way of carrying out these 
experiments has been described below. The experimental 
drying bin (Fig. 1) consisted of twelve segments (1), easy to 
disconnect, each 0.1 m high. The mass of the top segment 
was weighed using for this purpose an electronic balance 
“AXIS B 10” of Sartorius, Germany (resolution =  
1 g) and the GMC during drying was calculated from the 
mass balance on the basis of water losses. The velocity of 
the air flowing through grain layers was measured at the  
 

outlet from the drying chamber using the rotameter type 
airflow meter (b) of the resolution 0.00022 m s-1 per 1 mm 
length of the scale (Lokkes Maskinfabrik, Denmark). 
 The experimental rig was equipped in a fan (2) with a con-
trol system of the engine rotational speed (3) and a heater (5) 
with a pulse control system of electrical power (6). Such 
equipment allowed precise parameter control of the air blown 
into the mass of grain. In order to enforce moisture desorption 
from grain throughout the drying period, an electronic hu-
midistat (4b) was applied which controlled the air heater 
which was responsible for ensuring that the air RH blown into 
the grain bulk did not exceed 55%. The responsibility of the 
second humidistat (4a) was to switch off the fan whenever the 
air RH increased over the value of 96% (e.g. during periods of 
rainfalls). 
 In the course of each drying process, every 10 minutes, 
temperature was registered in eight and the air RH in two 
places of the research station. The temperature was measured 
with the assistance of Cu-Konstantan thermocouples (9), 
whereas the air RH – using a probe with a sensor that works 
according to the capacitive measuring principle (8) (type 
EE21-FT6B53/T24 of the E+E Elektronik Comp., Austria). 
The temperature was measured at the place where the ambient 
air was sucked in by fan (Tatm.), in the channel supplying the 
plenum air to the grain bulk (TIN) and in segments of the dry-
ing chamber (T2 – T12). The RH of the atmospheric air 
(RHatm.) was measured and the plenum air (RHIN) was calcu-
lated based on measurements of RHatm., Tatm., TIN and psy-
chrometric relationships. All thermocouples and humidity 
probes were connected to the computer system of data acqui-
sition (10) and (11) (ICP-CON I-7018 of the ICP Taiwanese 
company) which allowed registration, visualization and ar-
chiving of measurement results. Temperature and humidity 
probes were calibrated before trials. After calibration, the re-
peatability of results and maximum differences of measure-
ments between the applied eight temperature probes did not 
exceed ±0.2°C. However, due to differences between charac-
teristics of individual sensors and their nonlinearity, the accu-
racy of the temperature measurements amounted to ±0.5°C. 

 

 
 
Fig. 1. Research rig: 1 – drying bin (L2 ... L12 – layers 2 – 12), 2 – fan, 3 – a control system of the engine rotational speed,  
4 – humidity controller, 5 – electrical heater, 6 – a pulse control system of electrical power, 7 – wall of building, 8 – air RH 
probe, 9 – temperature sensors, 10 – computer PC with a data acquisition program “Vi-dry”, 11 – data acquisition system’s unit 
(Taiwanese ICP_CON I-7018) 
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The measurement accuracy of the air RH in the important 
range of 10%-96% guaranteed by the manufacturer of probes 
was ±2.5%. In order to improve their accuracy, probes were 
calibrated prior to experiments and checked after the trials in a 
humidistat chamber with saturated NaCl solution (reference 
humidity 75%). However, due to the phenomenon of the hys-
teresis of sensors, it was not possible to reduce the range of 
error below ±2%. 
 
2.2. Methods employed to develop a neural network 
 
 The authors used the analytical software package 
STATISTICA 7.1 ‘Neural Networks’ to develop, train and 
test different types of neural networks. In particular, they 
used such modules as “Intelligent Problem Solver”, “Cus-
tom Network Designer” and “Sensitivity Analysis” as well 
as such methods of feature selection as: “Forward stepwise 
selection”, “Backward stepwise selection” and “Genetic 
algorithm”. The “Intelligent Problem Solver” was used for 
initial network development, while the “Custom Network 
Designer”, which allows greater interference in the parame-
ters of the required network model, was employed for the 
independent selection of the network topology. The module 
called “Sensitivity analysis” was used for the initial analy-
sis of the significance of input values. This analysis em-
ploys two indicators: ratio of the network error and rank. 
The ratio of the network error determines the impact on the 
network operation of the removal of individual variables (it 
is the ratio of the error to the error obtained using all vari-
ables). The bigger the ratio, the better and when its value is 
below 1, then the variable can be rejected. On the basis of 
the ratio the rank of a given variable is defined - where 
value 1 has the highest significance for the network. The 
following three methods were used to select features prop-
erly: “Forward stepwise selection”, “Backward stepwise 
selection” and “Genetic algorithm”. A large number of tests 
with different systems of input values is carried out during 
the operation of feature selection algorithms. For this rea-
son, the program “Statistica – Neural Networks” uses fast 
learning probabilistic neural networks (PNN) or generalised 
regression neural networks (GRNN). During the consecu-
tive iterations, the stepwise methods either add or remove  
 

successive variables. Genetic algorithms utilise for tracing 
variables such evolution mechanisms as: inheritance, cross-
ing and mutation [6]. During the selection of features, the 
input system is assessed on the basis of the select error of 
the employed PNN and GRNN networks. 
 
3. Model development of Neural Networks 
3.1. Data files 
 
 In order to find the optimal input variables of the neural 
network system, two different files of training data were 
developed on the basis of the measurement results. The first 
of the files comprised temperature differences between the 
selected layers of grain bulk (Fig. 2). This system of vari-
ables is connected with the transfer of the drying front 
through the drier column. The file contains 10 (input) inde-
pendent variables and one (output) dependent variable. The 
independent variables are of continuous type – these are 
measurement results, while the dependent variable is of 
categorical nature (it assumes two complete values to which 
labels were assigned: 0 – Wet; 1 – Dry). The file consists of 
3007 cases. The data set was randomly divided into the fol-
lowing three subsets at the ratio of 2:1:1 – the training sub-
set (1505 cases), the selection subset (751 cases) and the 
test subset (751 cases). The training subset is used by the 
Statistica 7.1 software to carry out the network model train-
ing. The next subset – selection is used to check the net-
work quality (already during the training process). This is 
important to avoid network overtraining and good generali-
sation of knowledge. The last of the subsets – the test sub-
set takes part in the above-mentioned processes and it is the 
ultimate tool which allows appropriate quality assessment 
of the obtained model. 
 The second data file comprised temperature values 
measured in selected layers (Fig. 3). It contains 11 inde-
pendent variables and one dependent variable. The inde-
pendent variables are of continuous type, while the depend-
ent variable is of categorical nature. The file consists of 
3906 cases. This data file was also divided randomly into 
the following three subsets: the training subset (1954 
cases), the selection subset (976 cases) and the test subset 
(976 cases). 

 
 
Fig. 2. Structure of the data file containing temperature differences. Variables: 1 – time from the beginning of the drying 
process [s]; 2 – atmospheric air temperature [oC]; 3 – atmospheric air relative humidity [%]; 4 – temperature of plenum air 
[oC]; 5 – relative humidity of plenum air [%]; 6 – drying air velocity [m/s]; 7, 8, 9 and 10 – temperature differences between 
layers in the dryer, respectively: T10-T12, T6-T12, T4-T12, T2-T12; 11 – output variable 
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Fig. 3. Data file structure containing temperature values measured in selected locations inside bulk of grain. Variables: 1 – 
time from the beginning of the drying process [s]; 2 – atmospheric air temperature [oC]; 3 – atmospheric air relative humid-
ity [%]; 4 – temperature of plenum air [oC]; 5 – relative humidity of plenum air [%]; 6 – drying air velocity [m/s]; 7, 8, 9, 
10, 11 – temperature values measured in layers 2, 4, 6, 10 and 12 of grain bulk: T2, T4, T6, T10 and T12; 12 – output variable 
 
 
3,2. Data standardization 
 
 Empirical data sets are often burdened with measure-
ment errors, noise or interference. In addition, variables of 
different measurement units can occur in data sets and all 
these factors may exert a negative impact on the operation 
of some ANN training algorithms. In order to avoid it, it is 
necessary, during the stage of initial preparation, to stan-
dardize the data, i.e. to bring all data to a non-dimensional 
form of a uniform range of variability (so called, pre-
processing). Most frequently, scaling in relation to the 
minimal value (so called minimax function [7] ) is applied 
for this purpose. It involves adjusting values fed at the input 
of the network to the intervals appropriate for them. Fol-
lowing such transformation, the smallest value of a given 
variable is ‘0’ and the largest – ‘1’, whereas the remaining 
values are assigned numbers between these values. One 
neuron in the output layer assuming values ‘0’ and ‘1’ for 
each of the classes corresponds to a two-state dependent 
variable. 
 
3.3. Initial search of the network model 
 
 Intelligent Problem Solver was utilised for the initial 
analysis of the data. The search for an appropriate model 
was narrowed down to multilayer perceptrons (MLP) and 
radial basis function (RBF) networks. The total of 100 net-
works was tested of which 10 best ones were retained. In 
order to compare the obtained models later, the equilibrium 
between the error and the network diversity was preserved. 
All independent variables were used for the initial analysis. 
Five MLP and five RBF types of networks were obtained, 
each with 10 inputs and different number of neurons in the 

hidden layer. Three files characterised with diverse topol-
ogy were selected (Fig. 4). They comprised: 
 

• MLP 10-12-1 (10 neurons in the input layer, 12 neurons 
in the hidden layer, 1 neuron in the output layer), the net-
work trained for 100 epochs by a back propagation algo-
rithm followed by 14 epochs - by a conjugate gradient algo-
rithm and, finally, a network with the smallest select error 
was chosen, 
 

• RBF 10-352-1 (10 neurons in the input layer, 352 neu-
rons in the hidden layer, 1 neuron in the output layer), the 
following methods were used for training: the sampling and 
k-nearest neighbours methods as well as pseudo-inversion 
(linear optimisation), 
 

• RBF 10-522-1 (10 neurons in the input layer, 522 neu-
rons in the hidden layer, 1 neuron in the output layer), the 
following methods were used for training: the sampling and 
k-nearest neighbours methods as well as pseudo-inversion 
(linear optimisation). 
 

 The lowest values of the training error and the selection 
error were decisive in the selection process. The most de-
sirable feature of the ANN is its ability to generalise the ac-
quired knowledge. The value of the selection error provides 
important information about knowledge generalisation; the 
lower this value is, the better. Increased selection error in-
dicates the decline in the capability of the network to gen-
eralise; the trained cases were learnt ‘by heart’. The test set 
which was not used to build the model was applied for the 
final test of the ANN possibilities. If the value of the test 
error is low, then the network should generalise new data 
well [11]. The obtained networks are characterised by low 
values of the selection and test errors. 

 

 

 
 
Fig. 4. Parameters of the best networks for the data set with temperature differences 
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Table 1. Results of the analysis of the variable selection for the data set with temperature differences 
 

 Error Time T_atm. RH_atm. T_in RH_in v T10-T12 T6-T12 T4-T12 T2-T12 

Final 0,3658 Y - - - - Y Y Y - Y 

 
Table 2. Analysis results of variable selection for the data set with temperature values in selected locations inside the bulk of 
grain 
 

 Error Time T_atm. RH_atm. T_in. RH_in v T_2 T_4 T_6 T_10 T_12 

Final 0,3485 Y - - - - Y Y Y Y Y Y 
 
 
3.4. Decrease in the number of input data 
 
 In order to check the significance of the individual input 
data describing the process and limit the number in the de-
velopment of the model, the sensitivity analysis was per-
formed. After averaging the values obtained from the analy-
ses for three models, the highest rank was obtained by the 
‘time’ variable followed by the ‘velocity’ variable. On the 
basis of the results of the sensitivity analysis, the number of 
input variables was reduced. For this purpose, the following 
feature selection algorithms were employed: forward step-
wise selection, backward stepwise selection and genetic algo-
rithms. Each of the algorithms presented the same system of 
inputs. The most useful turned out to be the following vari-
ables: time, drying air velocity (v) and the following tem-
perature differences: T10-T12, T6-T12 and T2-T12 (Tab. 1). 
 
3.5. Proper search of the network model 
 
 The second stage of the neural network selection for the 
drying process prediction was the utilisation of the custom 
network designer which involved the training of the net-
work using for this purpose the optimal input system calcu-
lated by the feature selection algorithms. Only RBF type 
networks were taken into account because they achieved 
the lowest error values in previous tests. The total of 100 
networks was tested. The network selected, the best net-
work of the RBF type of 5-352-1 topology (5 neurons in the 
input layer, 352 neurons in the hidden layer, 1 neuron in the 
output layer), was characterised by a high correctness of 
classification and the select error of 0.1231 and the test er-
ror of 0.1207. Another consideration taken into account was 
to preserve the balance between the network quality and its 
size. The identical procedure was employed in the case of 
the data set with temperature values in selected locations 
inside the bulk of grain. The total of 100 networks was 
tested of which 10 were saved. The sensitivity analyses of 
the obtained networks as well as the selection analyses of 
input variables were carried out using the same algorithms 
as before. In this case, the following variables were treated 
as the most important ones: time, drying air velocity (v) and 
temperatures in individual layers (Tab. 2). The results of 
these analyses were used to look for networks with the 
smaller number of inputs and then proceeding to training 
the network employing the optimal input system calculated 
by the algorithms. The total of 100 networks was tested. 
The network finally selected was the best network of the 
RBF type of 7-300-1 topology (7 neurons in the input layer, 
300 neurons in the hidden layer, 1 neuron in the output 
layer). The values of its select and test errors were: 0.0974 
and 0.1052, respectively. 

4. Network model validation and discussion 
 
 Employing initially the intelligent problem solver and 
‘fine tuning’ the models with the assistance of the custom 
network designer, satisfactory results were obtained (Figs. 
5, 6). Small select errors (0.123131 for the first network and 
0.097425 – for the second) provide the most important in-
formation for the assessment of the networks. They indicate 
their capability to generalise and avoid overtraining. In or-
der to make sure that the results for the selection subset 
were not random, the test subset was chosen for the final 
selection of the model. It does not take part in the network 
training process and is used only once. The similar error 
values for the selection and test subsets indicate that the 
network generalises the acquired knowledge well. 
 The utilisation of different methods of input variable se-
lection such as the sensitivity analysis or the feature selection 
algorithm aimed at the justification of the removal of the se-
lected input variables. Identical results for all methods pro-
vide unequivocal information about their optimal selection. 
This made it possible to reduce significantly the number of 
independent variables for each of the data sets.  
 With regard to the classification problem, one of the 
important measures of the quality of the obtained model is 
the number of the correctly assigned cases to recognised 
classes. In the developed networks, this correctness remains 
on a high level and amounts to 99.3% for the Wet class and 
97.3% for the Dry class. These values for the second net-
work amount to 99.6% and 97.4%, respectively. When 
comparing the networks obtained for the first and second 
data sets, it can be concluded that both of them operate with 
similar generalisation capabilities. 
 
5. Conclusions 
 
1. The study confirmed the research assumption about the 
possibility of developing a model of an artificial neuron 
network for the identification of the endpoint of the low-
temperature drying process in an inert barley grain 1.2 m 
thick. This is evident from the high correctness of the case 
assignment to recognised classes (ranging from 93.3-
99.6%) as well as from the high capability to generalise the 
analysed data. 
 
2. Using feature selection algorithms, it was possible to 
reduce the number of input variables: from 10 to 5 for the 
set of measurement results taking into consideration grain 
temperature differences between the selected layers of the 
inert grain bulk and from 11 to 7 for the set of measurement 
results taking into consideration grain temperature values at 
the selected layers of the inert grain bulk. 
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RBF  5-352-1 

 
 
Fig. 5. Classification results for the first data set with grain temperature differences between selected layers 
 

 

RBF  7-300-1 

 
 
Fig. 6. Classification results for the second data set with grain temperature values in selected layers 
 
3. The following variables: time of drying, drying air ve-
locity and grain temperature value in all layers turned out to 
be the most important ones allowing the identification of 
the drying barley grain in bulk of 1.2 m thick.  
4. Data sets containing 3906 cases, 3009 divided in three 
subsets: training, selection and test, are sufficient to obtain 
networks with satisfactory generalising values. 
It is necessary to conduct further search to find the way of 
decreasing the number of neurons in the hidden layer of the 
obtained neural networks. 
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