## A.V. KUZMITSKI<sup>1</sup>, W. TANAŚ<sup>2</sup>

<sup>1</sup> Belarusian State Agrarian Technical University Minsk, Belarus
 <sup>2</sup> University of Life Sciences in Lublin, Poland

## MODELING OF SOIL STRAIN

#### Summary

The effect of punctual deformation on soil tension was analysed. The conditions of deformation destruction at optional durability e. g. of share or chisel were determined.

# МОДЕЛИРОВАНИЕ ВЗАИМОДЕЙСТВИЯ ДЕФОРМАТОРА С ПОЧВОЙ

### Резюме

В статье представлено взаимодействие точечного деформатора с почвой. Проведено анализ его поля напряжений и скорости изменения значений функции этих напряжений.

#### 1. Введение

Задача статики о количественной оценке напряжений в случае приложения к почвенному массиву сосредоточенной нагрузки была впервые поставлена и решена Ж. Буссинеском [1].

В частности, им получено уравнение, устанавливающее зависимость радиальных напряжений  $\sigma_R$  от величины приложенной силы *F*, расстояния *R* до точки приложения нагрузки и угла  $\beta$  отклонения от направления действия силы:

$$\sigma_R = \frac{3}{2} \cdot \frac{F}{\pi \cdot R^2} \cos \beta \cdot \tag{1}$$

Из уравнения (1) следует, что радиальные напряжения обратно пропорциональны квадрату расстояния до точки приложения нагружающей силы F и прямо пропорциональны косинусу угла отклонения от линии её действия. Эпюра радиальных напряжений в соответствии с уравнением (1) изображена на рисунке 1. Как видно из рисунка она имеет серповидную форму, изменяясь от нуля на оси Y до максимального (амплитудного) значения на оси X.

Богатый научно-теоретический и практический материал по данному направлению содержится в трудах В.П. Горячкина, В.А. Желиговского, М.Е. Мацепуро, А.Т. Вагина, Ю.В. Чигарева и ряда других учёных.

#### 2. Материал и методы

Впишем в полуокружность R (рисунок 1) окружность радиуса R/2 и выберем два произвольных направления  $l_1$  и  $l_2$  под углом и оси  $X \beta$  и  $\beta_2$  соответственно. Лучи  $l_1$  и  $l_2$ 

пересекут полуокружность R в точках M и N, а вписанную окружность в точках  $M_1$  и  $N_1$ . Через полученные точки  $M_1$  и  $N_1$  проведем полуокружности из центра O радиусами  $R_1$  и  $R_2$ .

Определим радиальные напряжения на полученной схеме в направлении  $l_1$ . Согласно формуле Буссинеска радиальное напряжение  $\sigma_{RM}$  в точке M будет равно  $\sigma_{RM} = 3F \cos \beta_1 / (2\pi R^2)$ ,

а в точке 
$$M_1 \sigma_{RM_1} = 3F \cos\beta_1 / (2\pi R_1^2)$$
.



Рис. 1. Схема к анализу поля напряжений точечного источника

Fig. 1. Scheme to the analysis of stress field of point source

Радиусы R<sub>1</sub> и R связаны простым соотношением из  $\Delta OM_1 A: R_1 / R = \cos\beta_1$ , или  $R_1 = R \cos\beta_1$ . Тогда  $\sigma_{RM_1} = 3F / (2\pi R^2 \cos\beta_1)$ , (2)

а проекция  $\sigma_{M1}$  этого напряжения на нормаль к вписанной окружности вследствие равенства соответствующих углов (см. рисунок 1)

$$\sigma_{M1} = 3F/(2\pi R^2) = \sigma_{RA}, \qquad (3)$$

где  $\sigma_{RA}$  – радиальное напряжение в точке A (при  $\cos\beta = 1$ ). В направлении  $l_2$  аналогично рассмотренному выше:  $\sigma_{RN1} = 3F \cos\beta_2 / (2\pi R_2^2)$ , а так как  $R_2 = R \cos\beta_2$ , то

$$\sigma_{RN_1} = 3F / (2\pi R^2 \cos\beta_2), \tag{4}$$

а интересующая нас проекция этого напряжения на нормаль к вписанной окружности

$$\sigma_{N1} = 3F / (2\pi R^2) = \sigma_{RA}.$$
(5)

Как видим, по любому направлению l нормальные составляющие радиального напряжения к вписанной окружности равны между собой и равны радиальному напряжению на оси X в точке A, т.е. эпюра нормальных напряжений  $\sigma$  для вписанной окружности принимаем форму кольца (см. рисунок 1).

Таким образом, в почвенном массиве перед точкой приложения силы F образуется окружность (в пространстве – сферическая область диаметром D=R), сжимаемая равными нормальными напряжениями, величина которых прямо пропорциональна силе F и обратно пропорциональна квадрату диаметра или площади поверхности сферы D

$$\sigma = 3F / (2\pi D^2) \,. \tag{6}$$

С увеличением силы F и возрастанием напряжения в точке O диаметр окружности уменьшается. С позиций статики указанная область – самоуравновешенная система, разрушить которую теоретически невозможно: при любом значении силы F сфера будет сжиматься, оставаясь в равновесии.

Определим значения касательных напряжений на окружности D в точке  $M_1$ . Учитывая равенство соответствующих углов  $\tau_{M1} = \sigma_{RM1} \cdot sin\beta_1$  или, подставляя значение  $\sigma_{RM1}$  по выражению (2), получим

$$\tau_{M1} = 3Ftg\beta_1 / (2\pi R^2) \,. \tag{7}$$

В точке *N*<sub>1</sub> касательные напряжения будут

$$\tau_{N1} = 3Ftg\beta_2 / (2\pi R^2), \tag{8}$$

а в общем виде, с учетом формулы (6), изменение касательных напряжений на окружности D определится выражением

$$\tau = \sigma \cdot tg\beta \,. \tag{9}$$

Следовательно, касательные напряжения вдоль окружности изменяются от нуля на направлении действия силы (ось Х), до бесконечности на направлении, перпендикулярном силе F (ось Y). Отсюда следует, что вблизи точки О, вследствие значительных касательных напряжений, создаются условия для разрушения деформатора любой прочности. Практически, острозаточенный лемех или долото активно затупляются именно в начальный период работы, пока лезвие не затупится настолько, что действие указанных выше касательных напряжений сместится в зону налипающей перед ним почвы, т.е. в саму область D. При этом скорость затупления снижается и некоторое время параметры рабочего органа сохраняют относительно стабильное значение (период нормальной эксплуатации).



Рис. 2. Производная по направлению и градиент функции касательных напряжений

Fig. 2. Directional derivative and gradient of a function of shearing stresses

Анализируя напряженную область, отметим ещё одно свойство радиальных по отношению к точке O напряжений: их проекция на ось X есть величина постоянная, равная нормальным напряжениям  $\sigma = \sigma_{RA}$ . Действительно, с учетом выражений (2), (4):

$$\sigma_x = \sigma_{RM1} \cdot \cos\beta_1 = \sigma_{RN1} \cdot \cos\beta_2 = \sigma = 3F / (2\pi D^2) \,. \tag{10}$$

Окружность D смещена относительно начала координат на величину 2a = D. Уравнение данной окружности имеет вид

$$x2 + y2 = 2ax,$$
 (11)  
откуда

$$y = \sqrt{2ax - x^2}$$
 или  $f(x) = \sqrt{2ax - x^2}$ . (12)

В полярной системе координат для  $x = \rho \cos \beta$  получим

$$f(x) = \pm \sqrt{2a\rho\cos\beta - \rho^2\cos\beta}.$$
 (13)

Из  $\triangle ABC$  (рисунок 2)  $2a = \frac{\rho}{\cos\beta} \Rightarrow \rho = 2a\cos\beta$ . Подставив

значение  $\rho$  в формулу (13), получим

$$f(x) = \pm \sqrt{\rho^2 - \rho^2 \cos^2 \beta} = \pm \rho \cdot \sin \beta.$$
(14)

Известно, что производной  $\frac{df}{dl}$  функции f(X) в точке *A* по направлению *l* называется предел в точке *A* 

отношения приращения функции на l к расстоянию  $\rho$  (A, X)

$$\frac{df}{dl} = \lim \frac{f(X) - f(A)}{\rho(A, X)}.$$
(15)

Для нашего случая производная функции по направлению примет вид

$$\frac{df}{dl} = \lim \frac{f(\rho \cos\beta, \rho \sin\beta)}{\rho} = \lim(\pm \frac{\rho \sin\beta}{\rho}) = \pm \sin\beta.$$
(16)

Знак ± в выражении (16) определяет положение ветвей синусоиды в 1 и 4 четвертях координатной плоскости *XOY* (рисунок 2).

Физический смысл производной по направлению заключён в том, что она показывает скорость изменения значений функции напряжений в направлении указанного вектора l, а градиент функции f есть вектор, указывающий направление в котором эта скорость изменения наибольшая.

По определению градиентом функции f в точке A называется вектор, проекции которого на координатные оси равны соответствующим производным функции f(X) в точке A. Также известно, что производная по направлению  $\frac{df}{dl}$  есть скалярное произведение градиента

на единичный вектор направления *l*. Следовательно, производная по направлению *l* равна проекции градиента на это направление:

$$\frac{df}{dl} = gradf \cdot l = |gradf| \cdot \cos(90 - \beta) = |gradf| \cdot \sin \beta.$$
(17)

С учётом формулы (16) получим:

$$|gradf| \cdot \sin\beta = \pm \sin\beta,$$
 (18)

Откуда

$$gradf = \pm 1. \tag{19}$$

### 3. Заключение

Как видим, производная по направлению является гармонической непрерывной функцией. Она определяет переменное значение параметров участвующих в процессе передачи энергии. А градиент – постоянная величина не зависящая от параметров окружности напряжений.

### 4. Литература

- [1] Farrell DA, Greacen EL, Larson WE (1967). The effect of water content on axial strain in a loam under tension and compression. Soil Sci Soc Am Proc 31: 445-450.
- [2] Горячкин В.П. Собрание сочинений. В. 3 т. Изд. 2-е, т. 2, М., «Колос», 1968. 455 с.
- [3] Желиговский В. А. Элементы теории почвообрабатывающих машин и механической технологии сельскохозяйственных материалов. Труды Грузинского сельскохозяйственного института. Тбилиси, 1960. 145 с.
- [4] Вагин А.Т. К вопросу взаимодействия клина с почвой. Обоснование основных параметров агрегатов для послойного внесения удобрений в почву. – В кн.: Вопросы земледельческой механики. Т. 15. Минск, Госиздат БССР,1965, С.4–142.
- [5] Чигарев Ю.В. Математические основы механики почв: Учеб. пособие / Ю.В. Чигарев, П.Н. Синкевич. – Мн.: УП «Технопринт», 2004. – 164 с.