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NEURAL IMAGE ANALYSIS IN IDENTIFICATION PROCESS OF MECHANICAL 
DAMAGES OF KERNELS  

 

Summary 
 

The subject of the study was to develop a neural model for the identification of mechanical damage in maize caryopses 
based on digital photographs. The author has selected a set of features that distinguish between damaged and healthy 
caryopses. The study has produced an artificial neural network of a multilayer perceptron type whose identification 
capacity approximates that of a human. 
 
 
 
NEURONOWA ANALIZA OBRAZU W PROCESIE IDENTYFIKACJI M ECHANICZNYCH 

USZKODZEŃ ZIARNIAKÓW 
 

Streszczenie 
 

Celem projektu badawczego było opracowanie modelu neuronowego do identyfikacji mechanicznych uszkodzeń ziarniaków 
kukurydzy na podstawie ich cyfrowych fotografii. Wybrany został zestaw cech charakterystycznych na podstawie, których 
możliwa jest klasyfikacja ziarniaków na zdrowe i uszkodzone. W wyniku badań otrzymano sztuczną sieć neuronową typu 
perceptron wielowarstwowy charakteryzującą się zdolnościami identyfikacyjnymi zbliżonymi do umiejętności człowieka. 
 
 
 
1. Introduction and literature review 
 
 The recent overproduction of agricultural products has 
brought substantial pressures to bear on the quality of goods 
placed on the market. Finding high quality plant materials 
and producing safe food has become a research priority in 
the European Union. Quality testing of cereal grains is a 
highly complex multi-stage process. In order to ensure 
highest quality, the level of impurities must be minimised. 
One form of impurities are damaged kernels. The primary 
purpose in assessing the number of mechanically damaged 
kernels is to gauge the quality of cereal grains. The 
secondary goal is to evaluate applied agricultural 
techniques. A complete record of the production process 
offers insights into the nature of damage and where it 
occurs. So far, identification has been limited largely to 
having human sighters spot damaged grains visually. An 
alternative is a set of screens that separate damaged and 
healthy kernels. The screens provide data on the number of 
damaged grains but not on the nature of damage. The 
author has sought to identify damaged maize kernels by 
means of computer-aided image analysis and an artificial 
neural network. Of all damage types, focus was placed on 
mechanical macrodamage. Cereal grain damage has a 
strong impact on the quality and volume of yield. Grain 
damage erodes market value cutting into producer income. 
It is therefore essential to develop affordable and effective 
means of identifying such damage. In agricultural 
terminology, grain damage falls under the definition of 
grain impurities [5]. Hence, the practice is not to recognize 
grain damage as a separate phenomenon. Industrial 
facilities commonly rely on mechanical screen sets to 
separate damaged and healthy grains. Damage to kernels in 
samples is then assessed manually. Assessments take 
approximately a minute per caryopsis. A well-trained 
specialist can distinguish damaged and healthy kernels with 

100% certainty. Yet, given the long time required to 
identify damaged grains, assessments must be limited to 
single sample checks from each batch. Hence, efforts are 
under way to bring machine-identification of grain damage 
to the human quality standard allowing testing greater 
quantities of crops at the same time. Niewczas attempted to 
evaluate mechanical damage in wheat kernels using X-ray 
techniques. The images were used to acquire information 
on the severity and nature of damage. Unfortunately, the 
method has proven to be poorly suited for industrial use. 
The cost of X-ray photography and the conditions required 
therefor limit the method to laboratory applications [3]. The 
use of thermography to identify the quality parameters of 
selected cereal and fruit grains, as described by 
Baranowski, entailed measurements of the radiation 
temperature on surfaces of selected cereal and fruit grains 
as well as the assessment of the suitability of such 
measurements for determining quality of the tested objects. 
Baranowski performed over a dozen sets of measurements 
of radiation temperature on the surfaces of the wheat, rye 
and maize grains and found substantial temperature 
differences between damaged and undamaged grains. The 
method may be of practical use in evaluating the proportion 
of damaged grains in total yield [1]. Another option is to 
measure the velocity of acoustic waves to identify 
mechanical damage in cereal grains. The method, as 
researched by Stasiak, has failed to fulfill expectations. 
Efforts continue to improve it [6]. Zdunek, in his turn, 
attempted to apply acoustic emissions to detect plant tissue 
ruptures. While his work did not focus on identifying grain 
damage, it could be used in assessing the quantities of 
damaged grains in yield [8]. The above research work has 
sought to apply a range of technologies to identify and 
assess macrodamage in cereal grains. However, none of the 
methods has been adopted by the industry. None has 
succeeded in offering a way of identifying grain damage at 
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an efficiency level comparable to that of human operators. 
The advantage of humans lies in their ability to perceive 
and draw conclusions on the recorded image. As of to date, 
no machine identification method has employed a similar 
mechanism. It thus seems advisable to devise a mechanical 
identification system that relies on image analysis and 
artificial neural networks which are actually equivalent to 
the mechanism that humans employ in such identification 
 

2. Materials and methods 
 
 To conduct the project, as described above, the author 
procured biological material in the form of maize kernels of 
the Clarica FAO 280 variety. Two study samples were 
taken, containing 100 and 50 kernels respectively. One of 
them contained 16 mechanically damaged kernels out of the 
total of 100, the other: 6 out of 50. The images were 
obtained with the use of a station made up of a light tent, 
camera tripod, digital (reflex) camera and a set of lights. 
Each caryopsis was placed in the tent against a black 
backdrop and photographed three times, each time being 
turned by 180° so as to expose its entire surface. Prior to 
their conversion to learning sets, all photographs were 
processed to improve image parameters such as sharpness 
and contrast and, where needed, to frame them 
appropriately. After that they were exported to a bitmap 
(*.bmb) format. The key stage was to select those caryopsis 
features that will allow the artificial neural network to 
identify damage. The author chose a set of representative 
variables that included a set of features providing 
information on colour relying on the RGB colour space 
model coded in a proprietary manner, and a selection of 
features containing information on shape as described with 
the use of selected shape coefficients: 
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where: LN – maximum vertical size,  
LV – maximum horizontal size 
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e) Malinowska coefficient 
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 Given the enormous quantity of data from a single 
photoghraph and the limitations of the artificial neural 
network simulator, the author chose to divide the images 
into standardized fragments. The author tested two image 
fragment sizes of 32x32 and 16x16 pixels (Figure 1). 

 
 

Fig. 1. Information system for image analysis – choice of learning data 
 
Table 1. Information about structure of learning files 
 

Symbol 
of 
learning 
files 

Image size 
(pixels) 

Fragment 
size 
(pixel) 

Size of single 
learning 
example 

Number of 
examples 
 

Number of 
learning 
examples  
 

Number of 
validation 
examples  
 

Number of 
testing 
examples 
 

α 256x256 16x16 263 9200 4600 2300 2300 
β 256x256 32x32 1031 3702 1852 925 925 
γ 512x512 16x16 263 9216 4608 2304 2304 
δ 512x512 32x32 1031 3072 1536 768 768 
ε 512x512 16x16 263 1952 976 488 488 
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ζ 512x512 32x32 1031 3200 1600 800 800 
 

 
 

Figure 2. Information system for creating learning files from images - schema of working 
 
Table 2. Information about topology and learning methods of neural models 
 

Number 
of model 

Symbol of 
learning files 

Type of 
network 

Number 
of enters 

Nmuber of 
neurons In 
hiden layer 

Number 
of exits 

Learning methods 

1 α MLP 263 26 1 BP50*CG168* 
2 β MLP 1031 33 1 BP50*CG165* 
3 γ MLP 263 29 1 BP50*CG217* 
4 δ MLP 1031 41 1 BP50*CG255* 
5 ε MLP 263 43 1 BP50*CG173* 
6 ζ MLP 1031 33 1 BP50*CG289* 

* - number of learning epochs, BP – Back Propagation, CG - Conjugate Gradient 

 
 The optimal photograph size, as established by tests, 
turned out to be 512x512 pixels. Information on the 
structure of the learning sets is provided in Table 1. To 
make effective use of the caryopsis macrodamage data 
derived from the photographs, one needs to convert the 
graphical data into learning sets designed to support the 
learning of artificial neural networks. To that end, the 
author developed a special information system (Figure 2). 
Once the image has been converted and analyzed, the 
system records selected information in a learning set format 
suited for the artificial neural network. The data set is 
divided into learning test and validation subsets. The 
available network typologies selected for test purposes were 
a linear network, a radial base function network, 
probabilistic neural networks, a general regression neural 
networks, a three-layered (one hidden layer) MLP network, 
and a four-layered (two hidden layers) MLP network [4]. 
The topologies and learning methods for the tested models 
are shown in Table 2. During the network learning stage, 
mechanical damage to maize kernels was best identified by 
the single-hidden-layer MLP network.  This may be owed 
to the dual nature of the identification task. Learning relied 
on the backpropagation of errors at the first stage and on the 
conjugate gradient method in the second stage. The learning 
parameters turned out to be significantly better for networks 
using data from larger image fragments (32x32 pixels). 
 
3. Results 
 
 The network that best identifies the mechanical damage 
of kernels was selected by means of the results of the 
learning, validation and testing sets. The author assessed 
individual model features such as the rate of learning, 
validation and test errors, the learning, validation and 

testing related quality of the neural network, the Receiver 
Operating Characteristic curve and classification problem 
statistics [7]. 
Statistics of model that best identified damage: 
learning error – 0,1069, 
validation error – 0,1371, 
test error – 0,1384, 
learning quality – 0,9907, 
validation quality – 0,9785, 
test quality -  0,9718, 
filed under ROC curve – 0,9713, 
classification problem statistics – on 1000, 27 was bad 
classified. 
 
 The model that best identified damage was designed on 
the basis of a multilayer (single hidden layer) perceptron 
artificial neural network with 263 inputs, an output and 43 
neurons in the hidden layer. The network was taught over 
50 epochs by way of backpropagation of errors and over 
173 epochs by way of conjugate gradients. 
 
4. Conclusions 
 
 The studies suggest it is advisable to apply the artificial 
neural network technology and computer-aided image 
analysis to identify damage. This conclusion is further 
supported by satisfactory characteristics of the best 
performing identification model. The study also revealed 
the optimal size of the caryopsis image to be used for the 
preparing of teaching sets for artificial neural networks. It is 
a compromise between image resolution and the size of the 
learning case which is limited by the processing power of 
the artificial neural network simulator. The approximate 
average global error rate of the top model is 8% which 
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means that 8 out of 100 kernels end up being misclassified. 
Comparisons show that human identification capacity is far 
superior. The approximate average error rate of humans in 
damage classification is 3% (materials of the Agricultural 
Market Agency 2005). Hence, the identification quality of 
the neural model is inferior to that of a man. On the other 
hand, neural networks’ definite advantage over man is their 
speed and identification repeatability. The model is capable 
of identifying a much larger number of kernels than a 
human sighter. The only constraint on the number lies in 
limitations of image acquisition and the processing power 
of the hardware on which the model is run. Another strong 
advantage lies in the absence of natural limitations that 
confine humans. A neural model can work continuously as 
it e.g. does not succumb to fatigue. It is not perfectly fit for 
tasks where the highest quality of identification is essential, 
e.g. laboratory testing. It will, however, serve its purpose 
well wherever identification time and process continuity are 
critical, as in such practical applications as grain sorting. 
 The neural model developed and verified by the author 
demonstrates it is advisable to apply it to identify 
macrodamage in maize kernels based on representative 
features established in caryopsis image analysis. In 
practical applications, the model has proven superior to the 

identification capacities of man, in particular where 
identification speed and duplicability are of the essence. 
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