Jakub OTRZASEK, Wojciech MUELLER, Krzysztof KOSZELA
Uniwersytet Przyrodniczy w Poznaniu, Instytutynierii Rolniczej
ul. Wojska Polskiego 50, 60-627 Pozna

e-mail: koszela@up.poznan.pl

METHODOLOGY OF COMPARING THE PERFORMANCE OF SQL INS ERT
OPERATIONS IN SELECTED RDBMS

Summary

Currently, the majority of the existing IT systesms those that are under development are basegplications that work

with database servers. The ever wider range oftfanalities that such servers are able to providsuits in an increase in
the number of their users and in the amount of gateessing. This leads to performance problemsh $uoblems are ad-
dressed through both programming and hardware gmhst In terms of programmatic solutions the aughamterest is fo-

cused on table structures in RDBMS'’s and their grenfince in terms of write operations on data. Soafaalyses have
been conducted relating to the impact of the presea a primary key and the way it is generatediata write operations
in a sample of relational databases.

Key words computer systems; functionality; relational dadsles

METODYKA POROWNYWANIA WYDAJNO SCI OPERACJI SQL INSERT
W WYBRANYCH RDBMS

Streszczenie

Aktualnie wgkszd¢ istniegcych i tworzonych systeméw informatycznych to agikwspoipracujce z serwerami bazodano-
wymi. Oferowana przez nie coraz szersza gama fumicjoici skutkuje zarébwno wzrostem liczbyythownikow, jak
i przetwarzanych danych. Powoduje to pojawienigpsbbleméw z wydajdoiq. Rozwgzywane g one zaréwno poprzez dzia-
tania programistyczne, jak i sptowe. Przedmiotem zainteresowania autoréw z obsdzialai programistycznych stataesi
definicja (struktura) samej tabeli w RDBMS z pekspey wydajngci zapisu danych. Dotychczas przeanalizowano wilyw

cza podstawowego i sposobu jego generowania na dapiych w przyktadowo wybranych bazach relacyjnych
Stowa kluczowesystemy informatyczne; funkcjonadtiprelacyjne bazy danych

1. Introduction

A key issue of growing relevance that is takemo iat-
count during the stages of design, developmentopaaa-
tion of IT database systems is the problem of appbtin
performance and scalability [1]. Generally, durthg mul-
ti-staged process of designing data structuresatiantion
is focused on mapping data correctly in accordanitk
any requirements or architectural data model thaetbeen
identified or adopted. The issue of performancitsielf is a
complex one as it can be analyzed in the contettefva-
rious operations performed on a production dataloasa
the context of using it to develop analytical datsds [1]
[7] [8]. Within this wide area of issues as outlinabove
the authors’ attention is concentrated on the impécthe
existence of a primary key and the way it is geteelan
performance of data write operations within ReladiloDa-

any factors that might affect measurements. Amathgro
things, it was decided that the application shdaddun so-
lely on the database server side. This would ebeirthe
impact of any programming interfaces used to prenad-
cess to data such as ADO, ADO.NET, etc. on the tifne
rows writing. The consequence of this decision thas our
attention was focused only on those RDBMS’s whase i
ternal languages are of the procedural type.

Any resulting procedure or procedures to be useoua
basic research tool should be able to create a shicture,
generate data rows and then save them. At the same
what should be recorded are the start and end tinesite
operations on the data and the number of rows tetsen
the database. This second piece of informationchvkiill
be required for analysis, should be stored in arstp ta-
ble.

Since the authors' primary goal was to answentles-

tabase Management Systems (RDBMS). The approach aibn as to what extent the presence of a primayyakel the

opted here reflects the perspective of the useROBMS
as a product. Therefore, the issues pertainingetoces-
ses of spatial distribution of data in the driverevggnored.

2. Methodology

Our attempt to answer the question as to whanexte
presence of a primary key and the way it is gerdraif-
fects the process of writing data in relationalathasses re-
quired the creation of the methodological framewarid
programmatic tools to be developed.

At the initial stage, a number of assumptions waat
down which, if adhered to, should eliminate the attpof

J. Otrzgsek, W. Mueller, K. Koszela

134

way it is generated affects the speed of write afimans it

was decided to write a series of separate indepmenme-

cedures for each scenario under examination, wtiere
common element would be a record of the experiment
sults stored in the same table. The following sdemavere

considered based on the type of information stanethe

database:

« data without a primary key,

« data with a primary key whose values are genetayed

the RDBMS,

» data with a primary key, where the values are geadr
on the basis of an algorithm provided by the user.

,Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2)

Procedures to provide this solution should be immgleted

for data feeding (ELT) used in the creation of datre-

under at least two RDBMS's. It was decided thats¢he houses, and instead focused on OLTP databaseosmuti
would be SQL Server 2008, Oracle XE and MySQL. The

deciding factor was the widespread use of thestodls.
For example, the free version of MSSQL is usedataid
with a number of well-known programs including Rtat
and MicroSubiekt. Furthermore, its extended (pa&fsion
is used in CDN XL, one of the most popular ERP paats
on the Polish domestic market. MySQL, in turn, doatés
the market of Internet applications, where mosttlod
scripts that are used to run forums are basedeAphache,
PHP and MySQL trio. Oracle's database softwareysrgm
excellent reputation as a favoured solution amdrey IT
community, which is why its free version (XE) walsa
tested in the same way as MSSQL and MySQL.

Another methodological assumption, which is fre-

quently adopted in database research, was thata tfas a
simple primary key which assumed int. values.

Although the methodology adopted here does not e

tirely reflect real operations, the present auttmigeve that
it is a proper tool for comparative research. Thesent re-
search and analysis purposefully forwent specidlio®ls

CREATEPROCEDURHdbo][simple_insert]
@numerowint=1000Q

@numtriesnt= 100;

AS

BEGIN

SET NOCOUNT ON;

declare @testb datetime;

declare @tests datetime;

3. Research tools - procedures

The above mentioned test procedures were firseldev
oped in T-SQL, which is an in-built language avaliéaas
part of SQL Server 2008R2. It allows the user nmady @o
manipulate data (components of the DML languageataD
Modification Language) but also define structuresnipo-
nents of the DDL language - Data Definition Langelag
These functionalities of T-SQL were made use dhafol-
lowing procedure which covers the case of writiagadn a
table without a pre-defined primary key. A decisimas
also taken to have partial results of the expertrsaned in
an additional table. To create the aggregates wmatld
form the partial results stored in the table, auging query
was used along with the DateDiff function. The graon-

n's_isted of rows that had been saved in the dataldhe

the same time interval of one second. This methbd o
grouping was possible because one of the fieldbefori-
mary table (simple_insert_table) contained theesystlate
and time returned by the GetDate function.

createtablesimple_insert_table (a int, b varchar(10), ¢ datet);

declare@numtriesint=@numtries;
declare@numerowlnt=@numerow;

set@testb= GETDATE();
while @numtries>0

begin

set@numerow= @numerowl;
while @numerow-0

begin

insertinto simple_insert_tablealues(1,'1234567890,GETDATE());

set@numerow= @numerow1;
end

set@numtries= @numtries -1;
end

set@tests GETDATE();

insertinto test_results (test_name,start_d,stop_d,paramh@ara
values(‘simple insert test@testb, @tests,@numerowl, @numtriesl);

set@numerow= @ @IDENTITY;
insertinto test_subresult (test_id, ins_num, time_agr)

select@numerovwcount(DATEDIFF(S, 19700101, ¢)) e, DATEDIFF(S, ‘19700101, c) from

simple_insert_table
group byDATEDIFF(S, 19700101, c);

insertinto test_results (test_name,paraml,param2,param3,pararam5)
selectstatistic for simple insert+ cas{(@numerowasvarchaj,exec_per,max_ins,avg_ins,min_ins,stddevfrios

dbo.simple_insert_stat;
droptablesimple_insert_table;

END

J. Otrzgsek, W. Mueller, K. Koszela

135

,Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2)

With minor changes made to the code shown above weg on an individual RDBMS the research environmeas

were able to create new procedures to be usedstisgte
tools for two subsequent cases. In the first s¢éentre key
was generated by an algorithm included in the pioce
The variable used to forward the value of the gateer key
to the query was at the same time a componenteofdin-
dition affecting the number of loops performed the sec-
ond case, the relevant tools of the database semrerused
to generate the key. In the case of the SQL S&988R2

reinstalled. Each test was run on a server madtiaehed
to an array in the Windows Server 2008 environn{ert
cept for the Oracle tests). The procedures foCtecle da-
tabase were tested on a server with the UbuntueSdry
operating system also attached to an efficientyaiirae re-
sults from the server environments were analogatistive
research machine (relations of test results foriveng
RDBMS).

the identity procedure was used, and at the leflvily&QL The next step was to create for each RDBMS to be
autoincrement was used. In RDBMS Oracle the segquentested an empty database also with the defaulhgstbf
procedure was used. The above tools were manipulat¢he wizard preserved. This allowed us to haverigspiro-

only in terms of their initial settings, includirthe initial
value and jump, which were identical in all the e=asin
order to ensure that generalizations could be rtaelalgo-
rithm was written in the PL/SQL language and in pine-
cedural extension of the SQL language for MySQL&.5

which allowed for tests to be performed using othes

RDBMS's.
Although at the time the present research waswzad

a new version of the SQL Server appeared (SQLeBerv.

2011), which this time featured two procedures énglithe
automatic creation of a primary key, this versismot final
and was therefore not subject to experimentatitwe. dddi-
tional tool facilitating key generation at the lévef
RDBMS is the sequence procedure [8].

4. Tests and results

The tests were conducted in a virtual environnsebup
under Windows XP Home Edition with the latest updat
installed. The installation was of the standarcetgs was
the subsequent installation of RDBMS (with all défaset-
tings of the wizard accepted). After the completidrtest-

cedures embedded in it and create a relationattatel for
the purpose of collecting test results.

Tests were conducted for each RDBMS for the foltai
scenarios described in detail below during which déa
rows were inserted into the database:

insertion of data without a primary key,

« insertion of data with a primary key generated base
an algorithm proposed by the authors,

insertion of data with a primary key generated gi$ive
generator of the RDBMS.

The results of the tests are presented in talfotar in
Tables 1, 2, 3 and 4. The tables show relative emlu
benchmarked against the results obtained for tis¢ $ce-
nario under examination. This procedure was apybetie
results obtained for each RDBMS tested. In the azse
MySQL 5.5.8 tests were performed with two differem:
gines INNODB and MyISAM, which are available foiigh
particular RDBMS. However, the authors found itdwis-
able to include the relative values obtained foe ttase
where write operations were performed on data naitis-
out a primary key.

Table 1. Characteristics of write operations urig@t. Server 2008R2

Relative dura- Relative write | Maximum rela- | Minimum relative | Modal value of Median of
tion of write speed on data | tive write speed| write speed on relative write relative write
Type of data -
operation for all rows on data rows data rows speed speed
rows [1/s] [1/s] [1/s] [1/s] [1/s]
with a primary key (scenario 2 1.013 0.986 1.150 0.591 0.998 0.988
with a primary key (scenario 3 1.017 0.982 1.073 1.226 0.973 0.972
Table 2. Characteristics of write operations ur@eacle XE 10.2.0
Relative dura- | Relative write | Maximum rela- | Minimum relative | Modal value of Median of
tion of write speed on data| tive write speed| write speed on relative write relative write
Type of data -
operation for all rows on data rows data rows speed speed
rows [1/s] [1/s] [1/s] [1/s] [1/s]
with a primary key (scenario 2 1.374 0.729 0.459 0.009 0.918 0.796
with a primary key (scenario 3 1.237 0.810 0.818 0.169 0.768 0.800
Table 3. Characteristics of write operations urdgsQL 5.5.8 (INNODB)
Relative dura- | Relative write | Maximum relative | Minimum relative | Modal value Median of
tion of write speed on data| write speed on dat§ write speed on of relative relative write
Type of data . .
operation for rows rows data rows write speed speed
all rows [1/s] [1/s] [1/s] [1/s] [1/s]
with a primary key (scenario 2 0.864 1.157 0.997 - 0.993 1.119
with a primary key (scenario 3 0.955 1.048 0.984 - 0.985 1.048

J. Otrzgsek, W. Mueller, K. Koszela

136

,Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2)

Table 4. Characteristics of write operations urdgsQL 5.5.8(MylISAM)

Relative dura-| Relative write | Maximum relative | Minimum relative | Modal value Median of
tion of write speed on data| write speed on dat§ write speed on of relative relative write
Type of data . .
operation for rows rows data rows write speed speed
all rows [1/s] [1/s] [1/s] [1/s] [1/s]
with a primary key (scenario 2 1.432 0.708 0.439 0.391 0.775 0.796
with a primary key (scenario 3 1.455 0.699 0.431 0.720 0.699 0.776

5. Discussion of results

The above test results for write operations om déth
and without a primary key do not differ significgnfrom
each other in the case of SQL Server 2008 R2. djyidies
equally to situations when the key is generatedthmy
RDBMS itself and by an algorithm embedded in theting
procedure. The delay on write operations on datéaming
a primary key for a write speed of 5000 rows perose
and where the number of data rows equalé IO
10 seconds. An important note to be made hereatsdilr-
ing the tests no decrease was observed in writedspen
rows that would correspond to any subsequent iseréa
the number of rows in the table.

A similar observation was made in the case of MySQ «

5.5.8 with the InnoDB engine with the exceptiontttize
system proved more sensitive to the way a primagywas
generated. Another surprising dependence that eam-b
curred from the results obtained in the test cotetbon
this RDBMS is an increase in the relative speedviofe
operations on data with a primary key. This appdéigaally
to situations where the primary key is generatedhieyda-
tabase system and by a procedure. Another factvihat
revealed during the study and which requires exilan is
the zero minimum speed values obtained during disést
carried out on MySQL 5.5.8 [5]. This resulted isignifi-
cant increase in standard deviation values andeaifegd
values of minimum relative speed.

These kinds of regularities were not found to teaa-

RDBMS’s may prove to be ineffective when workingttwi
new types of database systems, so the authors neeod
that any proposed solutions be tested beforehangai-
ticular, before the start of development work offtvgare
(especially in situations where OLAP structures are-
ated). Our research and analysis of its resultglation to
three different RDBMS’s prompt us to formulate thod-
lowing observations and conclusions:

* When data is provided with a primary key this geitgr
reduces write performance on data rows in eachhef t
RDBMS'’s tested with the exception of MySQL 5.5 witie
InnoDB engine enabled. The amount of decrease in pe
formance is varied but from the perspective of SSgirver
2008R2 it can be said to be insignificant.

The primary key generation mechanism that is It

a RDBMS will generally provide a better solutionterms
of write performance on new rows thaespokesoftware
solutions embedded within procedures.

* It seems advisable to undertake further researchisn
area in order to explain the unusual behaviour g58IL
5.5.8 with the InnoDB engine enabled in terms oftevr
speeds on data with and without a primary key.

* The overall times of writing data in the analyzexes
and in different RDBMS that were recorded given the
adopted methodology suggest that from the perspecti
OLTP applications efficiency gains attributablenmt using

a simple primary key are insignificant.

7. Bibliography

lier when the engine MylISAM was used under MySQL
5.5.8 [4]. The trends that were found to existhis tcase, [q]
based on the results of measurements, remain temisis
with the results obtained for Oracle XE, which daonfthe [2]
previous belief that the introduction of a key wdlow
down the process of writing new rows into the tablew- [3]
ever, significant drawbacks of the MyISAM enginegll

be borne in mind, i.e. its inability to create aantions and [4]
define referential integrity constraints [6]. [5]

6. Summary [6]

Modern RDBMS are very different in terms of imple- [7]
mentation of the relational model, which makesifificdilt
to formulate generalizations and rules regarding per- [8l
formance of these IT systems. In some cases, aitiet
solution or a solution based on past experiencen wit

J. Otrzgsek, W. Mueller, K. Koszela

137

Beynon-Davies P.: Systemy baz danych. Warszawa: WNT,
2003.

Celko J.: SQL for Smarties, Advanced SQL Programiring
Edition, 2005.

MySQL Reference Manual - http://dev.mysql.com/doc/
refman/5.5/en/mysql-nutshell.html 2011

MySQL MyISAM Storage Engine Manual - http://dev.
mysgl.com/doc/refman/5.0/en/myisam-storage-enging.h
MySQL InnoDB - http://dev.mysql.com/doc/refman/
5.5/en/innodb-storage-engine.html

MySQL refman - http://dev.mysql.com/doc/refman/éra/
ansi-diff-foreign-keys.html

Ponniah P.: Data Warehousing Fundamentals for éfeByr
sionals, 2010.

SQL Server perfomance - http://www.sgl-server-
performance.com/articles/dev/sequence_sql_servil (1.
aspx 2011.

,Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2)

