
J. Otrząsek, W. Mueller, K. Koszela „Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2) 134

Jakub OTRZĄSEK, Wojciech MUELLER, Krzysztof KOSZELA
Uniwersytet Przyrodniczy w Poznaniu, Instytut Inżynierii Rolniczej
ul. Wojska Polskiego 50, 60-627 Poznań
e-mail: koszela@up.poznan.pl

METHODOLOGY OF COMPARING THE PERFORMANCE OF SQL INS ERT
OPERATIONS IN SELECTED RDBMS

Summary

Currently, the majority of the existing IT systems and those that are under development are based on applications that work
with database servers. The ever wider range of functionalities that such servers are able to provide results in an increase in
the number of their users and in the amount of data processing. This leads to performance problems. Such problems are ad-
dressed through both programming and hardware solutions. In terms of programmatic solutions the authors’ interest is fo-
cused on table structures in RDBMS’s and their performance in terms of write operations on data. So far analyses have
been conducted relating to the impact of the presence of a primary key and the way it is generated on data write operations
in a sample of relational databases.
Key words: computer systems; functionality; relational databases

METODYKA PORÓWNYWANIA WYDAJNO ŚCI OPERACJI SQL INSERT
W WYBRANYCH RDBMS

Streszczenie

Aktualnie większość istniejących i tworzonych systemów informatycznych to aplikacje współpracujące z serwerami bazodano-
wymi. Oferowana przez nie coraz szersza gama funkcjonalności skutkuje zarówno wzrostem liczby użytkowników, jak
i przetwarzanych danych. Powoduje to pojawienie się problemów z wydajnością. Rozwiązywane są one zarówno poprzez dzia-
łania programistyczne, jak i sprzętowe. Przedmiotem zainteresowania autorów z obszaru działań programistycznych stała się
definicja (struktura) samej tabeli w RDBMS z perspektywy wydajności zapisu danych. Dotychczas przeanalizowano wpływ klu-
cza podstawowego i sposobu jego generowania na zapis danych w przykładowo wybranych bazach relacyjnych.
Słowa kluczowe: systemy informatyczne; funkcjonalność; relacyjne bazy danych

1. Introduction

 A key issue of growing relevance that is taken into ac-
count during the stages of design, development and opera-
tion of IT database systems is the problem of application
performance and scalability [1]. Generally, during the mul-
ti-staged process of designing data structures, our attention
is focused on mapping data correctly in accordance with
any requirements or architectural data model that have been
identified or adopted. The issue of performance in itself is a
complex one as it can be analyzed in the context of the va-
rious operations performed on a production database or in
the context of using it to develop analytical databases [1]
[7] [8]. Within this wide area of issues as outlined above
the authors’ attention is concentrated on the impact of the
existence of a primary key and the way it is generated on
performance of data write operations within Relational Da-
tabase Management Systems (RDBMS). The approach ad-
opted here reflects the perspective of the users of RDBMS
as a product. Therefore, the issues pertaining to the proces-
ses of spatial distribution of data in the drive were ignored.

2. Methodology

 Our attempt to answer the question as to what extent the
presence of a primary key and the way it is generated af-
fects the process of writing data in relational databases re-
quired the creation of the methodological framework and
programmatic tools to be developed.
 At the initial stage, a number of assumptions were set
down which, if adhered to, should eliminate the impact of

any factors that might affect measurements. Among other
things, it was decided that the application should be run so-
lely on the database server side. This would eliminate the
impact of any programming interfaces used to provide ac-
cess to data such as ADO, ADO.NET, etc. on the time of
rows writing. The consequence of this decision was that our
attention was focused only on those RDBMS’s whose in-
ternal languages are of the procedural type.
 Any resulting procedure or procedures to be used as our
basic research tool should be able to create a table structure,
generate data rows and then save them. At the same time
what should be recorded are the start and end times of write
operations on the data and the number of rows inserted in
the database. This second piece of information, which will
be required for analysis, should be stored in a separate ta-
ble.
 Since the authors' primary goal was to answer the ques-
tion as to what extent the presence of a primary key and the
way it is generated affects the speed of write operations it
was decided to write a series of separate independent pro-
cedures for each scenario under examination, where the
common element would be a record of the experiment re-
sults stored in the same table. The following scenarios were
considered based on the type of information stored in the
database:
• data without a primary key,
• data with a primary key whose values are generated by
the RDBMS,
• data with a primary key, where the values are generated
on the basis of an algorithm provided by the user.

J. Otrząsek, W. Mueller, K. Koszela „Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2) 135

Procedures to provide this solution should be implemented
under at least two RDBMS’s. It was decided that these
would be SQL Server 2008, Oracle XE and MySQL. The
deciding factor was the widespread use of these IT tools.
For example, the free version of MSSQL is used in Poland
with a number of well-known programs including Płatnik
and MicroSubiekt. Furthermore, its extended (paid) version
is used in CDN XL, one of the most popular ERP programs
on the Polish domestic market. MySQL, in turn, dominates
the market of Internet applications, where most of the
scripts that are used to run forums are based on the Apache,
PHP and MySQL trio. Oracle's database software enjoys an
excellent reputation as a favoured solution among the IT
community, which is why its free version (XE) was also
tested in the same way as MSSQL and MySQL.
 Another methodological assumption, which is fre-
quently adopted in database research, was that a there was a
simple primary key which assumed int. values.
 Although the methodology adopted here does not en-
tirely reflect real operations, the present authors believe that
it is a proper tool for comparative research. The present re-
search and analysis purposefully forwent specialized tools

for data feeding (ELT) used in the creation of data ware-
houses, and instead focused on OLTP database solutions.

3. Research tools - procedures

 The above mentioned test procedures were first devel-
oped in T-SQL, which is an in-built language available as
part of SQL Server 2008R2. It allows the user not only to
manipulate data (components of the DML language - Data
Modification Language) but also define structures (compo-
nents of the DDL language - Data Definition Language).
These functionalities of T-SQL were made use of in the fol-
lowing procedure which covers the case of writing data in a
table without a pre-defined primary key. A decision was
also taken to have partial results of the experiment saved in
an additional table. To create the aggregates that would
form the partial results stored in the table, a grouping query
was used along with the DateDiff function. The group con-
sisted of rows that had been saved in the database within
the same time interval of one second. This method of
grouping was possible because one of the fields of the pri-
mary table (simple_insert_table) contained the system date
and time returned by the GetDate function.

CREATE PROCEDURE [dbo].[simple_insert]
@numerow int=1000;
@numtries int= 100;
AS
BEGIN
SET NOCOUNT ON;
declare @testb datetime;
declare @tests datetime;

create table simple_insert_table (a int, b varchar(10), c datetime);

declare @numtries1 int=@numtries;
declare @numerow1 int=@numerow;

set @testb = GETDATE();
while @numtries >0
begin
set @numerow = @numerow1;
while @numerow >0
begin
insert into simple_insert_table values (1,’1234567890’,GETDATE());
set @numerow = @numerow -1;
end;
set @numtries = @numtries -1;
end;
set @tests=GETDATE();

insert into test_results (test_name,start_d,stop_d,param1,param2)
values (‘simple insert test’,@testb,@tests,@numerow1,@numtries1);

set @numerow = @@IDENTITY;
insert into test_subresult (test_id, ins_num, time_agr)
select @numerow,count (DATEDIFF(S, ‘19700101’, c)) e, DATEDIFF(S, ‘19700101’, c) from
simple_insert_table
group by DATEDIFF(S, ‘19700101’, c);
insert into test_results (test_name,param1,param2,param3,param4,param5)
select ‘statistic for simple insert: ‘+ cast(@numerow as varchar),exec_per,max_ins,avg_ins,min_ins,stddev_ins from
dbo.simple_insert_stat;
drop table simple_insert_table;

END

J. Otrząsek, W. Mueller, K. Koszela „Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2) 136

 With minor changes made to the code shown above we
were able to create new procedures to be used as testing
tools for two subsequent cases. In the first scenario, the key
was generated by an algorithm included in the procedure.
The variable used to forward the value of the generated key
to the query was at the same time a component of the con-
dition affecting the number of loops performed. In the sec-
ond case, the relevant tools of the database server were used
to generate the key. In the case of the SQL Server 2008R2
the identity procedure was used, and at the level of MySQL
autoincrement was used. In RDBMS Oracle the sequence
procedure was used. The above tools were manipulated
only in terms of their initial settings, including the initial
value and jump, which were identical in all the cases. In
order to ensure that generalizations could be made the algo-
rithm was written in the PL/SQL language and in the pro-
cedural extension of the SQL language for MySQL 5.5.8,
which allowed for tests to be performed using other
RDBMS’s.
 Although at the time the present research was conducted
a new version of the SQL Server appeared (SQL Server
2011), which this time featured two procedures enabling the
automatic creation of a primary key, this version is not final
and was therefore not subject to experimentation. The addi-
tional tool facilitating key generation at the level of
RDBMS is the sequence procedure [8].

4. Tests and results

 The tests were conducted in a virtual environment set up
under Windows XP Home Edition with the latest updates
installed. The installation was of the standard type as was
the subsequent installation of RDBMS (with all default set-
tings of the wizard accepted). After the completion of test-

ing on an individual RDBMS the research environment was
reinstalled. Each test was run on a server machine attached
to an array in the Windows Server 2008 environment (ex-
cept for the Oracle tests). The procedures for the Oracle da-
tabase were tested on a server with the Ubuntu Server 11
operating system also attached to an efficient array. The re-
sults from the server environments were analogous with the
research machine (relations of test results for a given
RDBMS).
 The next step was to create for each RDBMS to be
tested an empty database also with the default settings of
the wizard preserved. This allowed us to have testing pro-
cedures embedded in it and create a relational structure for
the purpose of collecting test results.
Tests were conducted for each RDBMS for the following
scenarios described in detail below during which 106 data
rows were inserted into the database:
• insertion of data without a primary key,
• insertion of data with a primary key generated based on
an algorithm proposed by the authors,
• insertion of data with a primary key generated using the
generator of the RDBMS.

 The results of the tests are presented in tabular form in
Tables 1, 2, 3 and 4. The tables show relative values
benchmarked against the results obtained for the first sce-
nario under examination. This procedure was applied to the
results obtained for each RDBMS tested. In the case of
MySQL 5.5.8 tests were performed with two different en-
gines INNODB and MyISAM, which are available for this
particular RDBMS. However, the authors found it inadvis-
able to include the relative values obtained for the case
where write operations were performed on data rows with-
out a primary key.

Table 1. Characteristics of write operations under SQL Server 2008R2

Type of data

Relative dura-
tion of write

operation for all
rows

Relative write
speed on data

rows
[1/s]

Maximum rela-
tive write speed

on data rows
[1/s]

Minimum relative
write speed on

data rows
[1/s]

Modal value of
relative write

speed
[1/s]

Median of
relative write

speed
[1/s]

with a primary key (scenario 2) 1.013 0.986 1.150 0.591 0.998 0.988

with a primary key (scenario 3) 1.017 0.982 1.073 1.226 0.973 0.972

Table 2. Characteristics of write operations under Oracle XE 10.2.0

Type of data

Relative dura-
tion of write

operation for all
rows

Relative write
speed on data

rows
[1/s]

Maximum rela-
tive write speed

on data rows
[1/s]

Minimum relative
write speed on

data rows
[1/s]

Modal value of
relative write

speed
[1/s]

Median of
relative write

speed
[1/s]

with a primary key (scenario 2) 1.374 0.729 0.459 0.009 0.918 0.796

with a primary key (scenario 3) 1.237 0.810 0.818 0.169 0.768 0.800

Table 3. Characteristics of write operations under MySQL 5.5.8 (INNODB)

Type of data

Relative dura-
tion of write
operation for

all rows

Relative write
speed on data

rows
[1/s]

Maximum relative
write speed on data

rows
[1/s]

Minimum relative
write speed on

data rows
[1/s]

Modal value
of relative
write speed

[1/s]

Median of
relative write

speed
[1/s]

with a primary key (scenario 2) 0.864 1.157 0.997 - 0.993 1.119

with a primary key (scenario 3) 0.955 1.048 0.984 - 0.985 1.048

J. Otrząsek, W. Mueller, K. Koszela „Journal of Research and Applications in Agricultural Engineering” 2012, Vol. 57(2) 137

Table 4. Characteristics of write operations under MySQL 5.5.8 (MyISAM)

Type of data

Relative dura-
tion of write
operation for

all rows

Relative write
speed on data

rows
[1/s]

Maximum relative
write speed on data

rows
[1/s]

Minimum relative
write speed on

data rows
[1/s]

Modal value
of relative
write speed

[1/s]

Median of
relative write

speed
[1/s]

with a primary key (scenario 2) 1.432 0.708 0.439 0.391 0.775 0.796

with a primary key (scenario 3) 1.455 0.699 0.431 0.720 0.699 0.776

5. Discussion of results

 The above test results for write operations on data with
and without a primary key do not differ significantly from
each other in the case of SQL Server 2008 R2. This applies
equally to situations when the key is generated by the
RDBMS itself and by an algorithm embedded in the testing
procedure. The delay on write operations on data containing
a primary key for a write speed of 5000 rows per second
and where the number of data rows equals 106 is
10 seconds. An important note to be made here is that dur-
ing the tests no decrease was observed in write speeds on
rows that would correspond to any subsequent increase in
the number of rows in the table.
 A similar observation was made in the case of MySQL
5.5.8 with the InnoDB engine with the exception that the
system proved more sensitive to the way a primary key was
generated. Another surprising dependence that can be in-
curred from the results obtained in the test conducted on
this RDBMS is an increase in the relative speed of write
operations on data with a primary key. This applies equally
to situations where the primary key is generated by the da-
tabase system and by a procedure. Another fact that was
revealed during the study and which requires explanation is
the zero minimum speed values obtained during the tests
carried out on MySQL 5.5.8 [5]. This resulted in a signifi-
cant increase in standard deviation values and unspecified
values of minimum relative speed.
 These kinds of regularities were not found to exist ear-
lier when the engine MyISAM was used under MySQL
5.5.8 [4]. The trends that were found to exist in this case,
based on the results of measurements, remain consistent
with the results obtained for Oracle XE, which confirm the
previous belief that the introduction of a key will slow
down the process of writing new rows into the table. How-
ever, significant drawbacks of the MyISAM engine should
be borne in mind, i.e. its inability to create transactions and
define referential integrity constraints [6].

6. Summary

 Modern RDBMS are very different in terms of imple-
mentation of the relational model, which makes it difficult
to formulate generalizations and rules regarding the per-
formance of these IT systems. In some cases, an intuitive
solution or a solution based on past experience with

RDBMS’s may prove to be ineffective when working with
new types of database systems, so the authors recommend
that any proposed solutions be tested beforehand, in par-
ticular, before the start of development work on software
(especially in situations where OLAP structures are cre-
ated). Our research and analysis of its results in relation to
three different RDBMS’s prompt us to formulate the fol-
lowing observations and conclusions:
• When data is provided with a primary key this generally
reduces write performance on data rows in each of the
RDBMS’s tested with the exception of MySQL 5.5 with the
InnoDB engine enabled. The amount of decrease in per-
formance is varied but from the perspective of SQL Server
2008R2 it can be said to be insignificant.
• The primary key generation mechanism that is built into
a RDBMS will generally provide a better solution in terms
of write performance on new rows than bespoke software
solutions embedded within procedures.
• It seems advisable to undertake further research in this
area in order to explain the unusual behaviour of MySQL
5.5.8 with the InnoDB engine enabled in terms of write
speeds on data with and without a primary key.
• The overall times of writing data in the analyzed cases
and in different RDBMS that were recorded given the
adopted methodology suggest that from the perspective of
OLTP applications efficiency gains attributable to not using
a simple primary key are insignificant.

7. Bibliography

[1] Beynon-Davies P.: Systemy baz danych. Warszawa: WNT,

2003.
[2] Celko J.: SQL for Smarties, Advanced SQL Programming, 3

Edition, 2005.
[3] MySQL Reference Manual - http://dev.mysql.com/doc/

refman/5.5/en/mysql-nutshell.html 2011
[4] MySQL MyISAM Storage Engine Manual - http://dev.

mysql.com/doc/refman/5.0/en/myisam-storage-engine.html
[5] MySQL InnoDB - http://dev.mysql.com/doc/refman/

5.5/en/innodb-storage-engine.html
[6] MySQL refman - http://dev.mysql.com/doc/refman/5.0/en/

ansi-diff-foreign-keys.html
[7] Ponniah P.: Data Warehousing Fundamentals for IT Profes-

sionals, 2010.
[8] SQL Server perfomance - http://www.sql-server-

performance.com/articles/dev/sequence_sql_server_2011_p1.
aspx 2011.

