
A.A. Doudkin, A.I. Petrovsky, A.V. Otvagin, R. Kh. Sadyhov „Journal of Research and Applications in Agricultural Engineering” 2013, Vol. 58(1) 35

Alexander A. DOUDKIN 1), Albert I. PETROVSKY 1), Aleksey V. OTVAGIN 2), Rauf Kh. SADYHOV 2)
1) United Institute of Informatics Problems of NAS of Belarus, Minsk, doudkin@newman.bas-net.by
2) Belarusian State University of Informatics and Radioelectronics, 6 P. Brovka st, Minsk, Belarus

MULTI-AGENT PARALLEL IMPLEMENTATION OF VLSI CAD PROCEDURES

Summary

The integrated framework for parallel processing of data describing integrated circuits layouts that based on a graph-
oriented parallel algorithm representation is represented. A parallel program is developed from single computational
units (grains) in specialized visual editor. This visual schema is translated into XML form that is interpreted by multi
agent runtime system, based on a MPI library. The runtime system realizes a dynamic optimization of parallel computa-
tions with the algorithm of virtual associative network. The proposed tools are well suited for rapid development, analysis
and execution of parallel algorithms with adaptation to specific cluster architecture.
Key words: manufacturing; software; parallel application models; graph models; optical inspection; image analysis

1. Introduction

 The modern semiconductor manufacturing needs to op-
erational inspection all of the critical procedures of VLSI
manufacturing. An optical inspection is the important part
of such control solutions. It implies the presence of some
operative analysis system [1] providing image registration,
visual information processing and analysis.
 The effective processing of large amounts of inspection
data can be achieved only with use of modern software de-
sign technologies. The one of the leading modern technolo-
gies is a parallel processing. The great obstacle for the
broad use of this technique is a necessity of solution of ad-
ditional tasks about optimization of developed applications
for greater performance. Providing and using of high-level
abstractions can greatly increase a quality and speed of ap-
plication development. Developers have a feasibility of a
rapid transfer of existing applications and algorithms to
parallel platforms.
 There exists a necessity of a development of integrated
tool suite for easy development, analysis and optimization
of parallel applications. This tool must hide a specific
mechanisms of parallelism realization that programmer can
to attend to information processing algorithm. The tool also
must provide a visual program presentation and features for
reengineering and adjusting the program structure to specif-
ic cluster architecture.
 The basis of parallel application development is a cer-
tain computational model. The one of a broadly used is a
task-parallel model that is perfect suited for realization of
many parallel applications. This model is very good ex-
pressed in graph-oriented visual representations. The exten-
sion of graph model by specification of its elements can be
used for development of complicated applications.
 In many cases the development of newly created paral-
lel applications is made on the basis of existing sequential
algorithms and their composition. The transfer and adapta-
tion of existing code for parallel virtual machines requires
many expenses. The realization of algorithm parts in form
of independent components allows using component devel-
opment paradigm, when the program is constructed from
large blocks of code. In this case the time of development
and testing of program can be reduced significantly.
 The process of parallel program execution itself needs
an application of sophisticated methods for load balancing,
planning and optimization. In many cases the nodes of par-

allel system can have temporal or spatial heterogeneity.
These systems must be equipped by means and tools of
runtime control and dynamic reconfiguration to achieve a
high performance rates.
 We propose an integrated tool suite for development,
analysis and support of parallel processing. This one has a
visual editor, translator, optimization tool and a runtime
system, based on MPI [2] library. The use of MPI makes
our tools suitable for wide range of parallel computers. In
the proposed system we realize next remarkable features:

1. Visual representation of algorithm, based on a graph-
oriented form and task-parallel computation model. We in-
troduce a concept of a computational grain that is a single
unit of processing. The grain can be developed in different
languages and must perform a dedicated interface for inte-
gration in parallel application.
2. Application mobility that is realized through a grain li-
braries that are attached to runtime system. The tools of our
framework also are developed in platform-independent
manner by use of open standards and tools (C++, Java,
MPI).
3. Static and dynamic optimization of parallel algorithms
with use of virtual associative network algorithm. This al-
gorithm is a variant of hybrid genetic algorithm and ensures
a fast search of optimal solutions. We use two modifica-
tions of algorithm for static and dynamic optimization re-
spectively.
4. A dynamic mapping of grains on the processors of a
computer cluster with use of information that is collected in
runtime. This information can be used for scheduling of
parallel processing application.
 The tools for parallel processing support use modern
architectures, in particular, an agent-oriented approach.
This one allows realizing a complex behavior for optimiza-
tion of parallel computing under circumstances of instable
resource and computation load.
 This paper is organized as follows. In section 1 the
graph-oriented model of program construction is considered
and the concept of computational grains is introduced. Sec-
tion 2 describes the main parts of a framework and its co-
operation in program development process. Section 3 is
dedicated to design and implementation of runtime system
for parallel applications support. Section 4 describes exper-
imental results of practical use of proposed tools for parallel
processing optimization.

A.A. Doudkin, A.I. Petrovsky, A.V. Otvagin, R. Kh. Sadyhov „Journal of Research and Applications in Agricultural Engineering” 2013, Vol. 58(1) 36

2. A parallel application model and a computational
grain concept

 The basic principles of creation a graph-oriented paral-
lel program representation are defined in previous paper
[3]. The scenarios for data processing are represented in the
form of Directed Acyclic Graph (DAG). DAG is represent-
ed as a tuple),,,(CWEVG = , where:
• V is a set of graph vertices NiVvi ≤≤∈ 1, . Each ver-
tex is associated with data processing operation. A set of
graph vertices represents decomposition of parallel data-
flow processing program on the separated operations;
• E is a set of graph edges

jiNjNiEvve jiji ≠==∈= ,,1,,1,)},({ , . An edge repre-
sents a precedence relation between operations in scenario
and determines a data transfer between these nodes;
• W is an operation cost matrix;
• С is an edge cost set, where Cc ji ∈, determines the
communication volume between two data processing opera-
tions, which is transferred by edge Ee ji ∈, . We consider
those operations, which are related and connected by the
edge, use an identical data format for a predecessor output
and a successor input. For all scenarios, particular edge has
an equal cost.
 The development of dataflow processing application
includes few stages:
• building of a scenario DAG that describes logical struc-
ture of application;
• assignment of operations to graph vertices and editing
of operations parameters for each datatype;
• mapping of scenario DAG to cluster architecture.
 Each computational operation in scenario is realized as
a separate unit called grain. These grains uses specific inter-
face for integration into framework and data exchange. The
design of grain makes possible a rapid adaptation of exist-
ing processing algorithms into parallel application. These
algorithms are transformed to objects that are capable to
form its own calling context on the base of received param-
eters. Each operation interprets its parameter string by con-
venient way and converts parameters to variable name or to
constant value. The order and rules of parameter transform
are determined by operation specification.
 All of the operations work with specific data storage fa-
cility that is incorporated into framework architecture. The
storage realizes a shared memory abstraction for source da-
ta and results of processing. A variant of shared memory is
realized on a shared file system that is common for many
cluster architectures. The storage interface provides opera-
tions for writing and reading of variable with defined name
that is used for its identification. There exists also a inter-
mediate storage mechanism in local memory of each pro-
cessor, where the result of this processor operations are
stored. This one allows reducing time expenses for variable
reading in case of repeated access.
 The parameters of operation are read from storage.
A single parameter is identified by object name, represented as
a string. Each parameter value is placed into corresponding
internal grain variable, thus all the parameters forms a calling
context. Further the operation is executed and results of pro-
cessing are placed in storage. At this moment these values are
accessible to another grains in parallel application.

 The grains are collected in specific libraries that are dy-
namically linked to parallel application. The grain is loaded
from library when it’s needed and is identified by operation
name. The realization of specific grain libraries for different
classes of processing algorithms easy expands the applica-
tion area of proposed framework.
 An example of the parallel program graph is presented
in Fig. 1, where each operation is denoted as Ci with a cost
vector. A cost of an information transfer between contigu-
ous operations is equal for all data types. Some operations
are strictly oriented on a specific processor while others can
be placed on each processor in cluster. If the operation cost
for some type of data is equal to zero, then this operation
must be skipped for the selected type of data.

1

32

4 5

C2=(1,0,2)

C1=(1,2,2)

C3=(2,4,3)

C4=(1,1,1)

C5=(1,0,3)

1

1

C5=(1,0,3)

Free-allocated
operation

Operation
with allocation

restrictions

Cost vector

Fig. 1. An example of program graph

 A matrix of restrictions Z(O,P) is formed according to
the following rules:
Z(O,P) = 1, if processor p allows execution of operation O;
Z(O,P) = 0, otherwise.
 The matrix of restrictions is used in optimization proce-
dures and prevents an erroneous allocation of the specified
operations on some processors. The restrictions arise be-
cause of a heterogeneous cluster structure and different op-
erations requirements.

3. The framework architecture

 The architecture of framework and its main components
are shown on the Fig. 2.

Fig. 2. The architecture of a framework

 The user interface is a collection of tools for visual de-
velopment and analysis of parallel application. It contains a
specific visual editor that uses a graph-oriented model of
algorithm representation. With this editor user can draw a
logical algorithm graph, map operations to graph vertices,

A.A. Doudkin, A.I. Petrovsky, A.V. Otvagin, R. Kh. Sadyhov „Journal of Research and Applications in Agricultural Engineering” 2013, Vol. 58(1) 37

and define parameters for operation execution to process
different data objects. For analysis of deterministic data
lows editor makes possible to define a dataflow pattern as a
queue of objects with corresponding types. Programmer al-
so can create a cluster topology and define performance
characteristics of each node.
 The optimization and mapping tools contains a simula-
tion model and optimization algorithm. The simulation
model is used for evaluation of schedules, produced by op-
timization algorithm and for visual representation of best
one. User can compare two different schedules in graphical
form as a Gantt chart and manually change schedule to
achieve best results.
 There exist many algorithms of DAG scheduling that
use various optimization techniques and heuristics. The
techniques include priority based list scheduling, for exam-
ple, algorithms HLF (Highest Level First), LP (Longest
Path), CP (Critical Path) [4-6]. Another technique is clus-
terization, and such algorithms, as DSC (Dominating Se-
quence Clustering) [7], and Sarkar algorithm [8], belong to
this technique. Another perspective search techniques use
evolutionary optimization. These techniques are based on
such algorithms, as a tabu search [9], simulated annealing,
and genetic algorithms [10]. The most powerful is a genetic
algorithm (GA) technique, and many of algorithms are pro-
posed in this field. However, the classical genetic algorithm
is a blind search technique. To speedup genetic algorithms
we proposed an algorithm of virtual associative network
[11-13], which belongs to a class of hybrid algorithms.
 The solutions, created by the virtual network algorithm,
are stored in XML form together with the parallel algorithm
representation. This file is interpreted by runtime system
that is constructed as a multi agent application. The runtime
system is build on top of MPI library. The architecture of
runtime system isolates parallel application logic from basic
tools for parallel process creation and control. This ap-
proach makes the parallel applications more platform-
independent and flexible.

4. Design and implementation of runtime multi agent system

 The runtime subsystem for dataflow processing is de-
signed as distributed multi-agent system [14]. The system
consists of two types of program agents: a coordinator and
an executor. All agents are realized as MPI processes and
use MPI facilities for execution control and data exchange.
The principles of system functioning allow to use it for pro-
cessing both deterministic and stochastic image flows. The
architecture of runtime system is presented in Fig. 3.

Fig. 3. Runtime system architecture

 The system uses a “master-slave” approach. Coordina-
tor is a main process that controls the logic structure of a
parallel algorithm. It contains a descriptor queue for all of
processing objects. Each descriptor determines a type of
object and a current grain that must be executed for this
one. The descriptor queue contains descriptors for all of
ready operations. The main task of coordinator is in trans-
ferring ready descriptors to free executors accordingly to
operation to processor mapping. The coordinator also
checks a moment of some operation finish and places new
ready descriptors to the queue.
 An executor agent is an abstraction of a real physical
processor. The main task of this one is execution of compu-
tational grains that are received from coordinator. The ex-
ecutor works with the grains library and loads required
grains for execution on dedicated processor. After comple-
tion of grain, the descriptor is returned to the coordinator.
The executor works while stop instruction is not received
from the coordinator. The interaction between agents is per-
formed through shared memory storage interface. All syn-
chronization tasks are performed by coordinator thus en-
sures deterministic parallel computations.
 In case of processing a stochastic dataflow the fixed op-
eration to processor mapping can be ineffective. The
runtime agents continuously checks system state and
characteristics. These characteristics are collected in the
coordinator and used for runtime optimization. The
optimization is based on the measuring of data processing
speed. When the dataflow changes its pattern significantly,
the system must adapt to this situation. The adaptation
procedure performs reconfiguration of the operation
mapping for all processors. When this reconfiguration is
done, the coordinator applies new scheme to transfer the
descriptors. The system tries to adapt to changed conditions
and to achieve a high processing speed.

5. Experimental results

 The proposed tools for parallel processing of data flows
are used for development of applications to process inte-
grated circuits layers images. The library of grains contains
in this case a set of preprocessing operations, and opera-
tions for contour detection and uniforms area selection. The
data types for these operations (images, filters and so on)
are placed in library too.
 For evaluating of proposed algorithms and a framework
two series of experiments have been made. First, we studied
the deterministic flows, which had a fixed number of ob-
jects with known types. The second group of experiments
was run with stochastic image flows, where the input data
were generated randomly.
 The results of a first group experiments shows that the
algorithm of virtual networks for static scheduling finds
better solutions and the performance of the algorithm is in-
creased, when the complexity of schedule is increased too.
The algorithm based on virtual networks finds solutions
faster, than classical GA and requires fewer computations.
 The second group experiments with stochastic image
flows shows that the dynamic optimization of operation
mapping in dataflow processing can significantly improve
the processing rate. The modified virtual associative net-
work algorithm brings very small overhead to parallel ap-
plication execution.

A.A. Doudkin, A.I. Petrovsky, A.V. Otvagin, R. Kh. Sadyhov „Journal of Research and Applications in Agricultural Engineering” 2013, Vol. 58(1) 38

6. Conclusions

 The development of parallel applications with specific
integrated component frameworks makes possible to signif-
icantly increase the speed and quality of all project proce-
dures. The use of visual editing, automatic analysis and op-
timization can attract new users to this area of computing.
 The architecture of framework based on a multi-agent
paradigm can be easy adapted to many industrial applica-
tions that requires a parallel processing. The flexible appli-
cation construction and runtime adaptation allows obtaining
a high performance of application. The proposed tools are
easy expandable with the new grain libraries, storage mech-
anisms and optimization algorithms.

7. References

[1] Voganti M., Ercal F., Dagli C., Tsunekawa S.: Automatic PCI

Inspection Algorithms: A Survey, Computer Vision and Im-
age Understanding, 1996, 63, p. 287-313.

[2] Gropp W., Lusk E., Skjellum A.: Using MPI: Portable Paral-
lel Programming with the Message Passing Interface. MIT
Press, 1995.

[3] A Framework for Parallel Processing of Image Dataflow in In-
dustrials Applications / Aleksej Otwagin, Alexander Doudkin //
Proceedings of the fourth International Conference on Neural
Networks and Artificial Intelligence (ICNNAI’2006), May, 31-
June, 2, Brest, Belarus /Brest: BSTU, 2006, p. 162-167.

[4] Macey S., Zomaya A.Y.: A performance evaluation of CP list
scheduling heuristics for communication intensive task
graphs // Proc. of IPPS/SPDP. 1998, p. 538-541.

[5] Menasce A., Saha D. et al.: Static and dynamic processor
scheduling disciplines in heterogeneous parallel architecture.

Journal of Parallel and Distributed Computing, 1995, Vol. 28,
pp. 1-18.

[6] Oh H., Ha S.: A Static Scheduling Heuristic for Heterogene-
ous Processors. Second International EuroPar Conference
Proceedings. Vol. II. Lyon, France, 1996, p. 573-577.

[7] Gerasoulis A., Yang T.: A comparison of clustering heuristics
for scheduling directed acyclic graphs onto multiprocessors.
Journal of Parallel and Distributed Computing, 1992, №4
(16), p. 276-291.

[8] Sarkar V.: Partitioning and Scheduling Parallel Programs for
Execution on Multiprocessors. The MIT Press, 1989.

[9] Porto S., Ribeiro A.C.: A Tabu Search Approach to Task
Scheduling on Heterogeneous Processors under Precedence
Constraints. International Journal of High-Speed Computing,
1995, №2 (7), p. 45-71.

[10] Michalewicz Z.: Genetic Algorithms + Data Structures =
Evolution Programs. Second, Extended Edition. Springer-
Verlag, 1994.

[11] Yufik Y.M., Sheridan T.B.: Virtual Networks: New frame-
work for operator modeling and interface optimization in
complex supervisory control systems. A Rev. Control,
Vol. 20. p. 179-195.

[12] Sadykhov R.Kh., Otwagin AV.: Solution search algorithm of
solution search for systems of parallel processing based on a
virtual neural network model. Automatic Control and Com-
puter Science, Vol. 35 (1), Allerton Press Inc., New York,
2001, p. 25-33.

[13] Sadykhov R.Kh., Otwagin A.V.: Algorithm for optimization
of parallel computation on the basis of genetic algorithms and
model of a virtual network. Proceedings of the International
Workshop on Discrete-Event System Design DESDes’01,
Przytok, Poland, June 27-29, 2001, p.121-126.

[14] Poslad S., Buckle P., Hadingham R.: Open Source, Standards
and Scaleable Agencies. International Workshop on
Infrastructure for Agents, Multi-Agent Systems, and Scalable
Multi-Agent Systems, June 03-07, 2000, Manchester, UK,
p. 296-303.

