

Wojciech MUELLER, Przemysław IDZIASZEK, Sebastian KUJAWA, „Journal of Research and Applications in Agricultural Engineering” 2018, Vol. 63(4)
Mateusz ŁUKOMSKI, Przemysław NOWAK 121

Wojciech MUELLER, Przemysław IDZIASZEK, Sebastian KUJAWA, Mateusz ŁUKOMSKI, Przemysław NOWAK
Poznań University of Life Sciences, Institute of Biosystems Engineering, Poznań, Poland
e-mail: muellerw@up.poznan.pl

Received: 2018-04-05 ; Accepted: 2018-11-22

MAPPING OF RELATIONAL STRUCTURES IN GRAPH DATABASE NEO4J

Summary

Extension of functionality of most applications including the ones supporting agriculture, as a general rule requires an in-
depth knowledge of relational structures creating databases, which can be sometimes difficult to achieve. It can result from
the lack of complete technical documentation as well as relatively huge complexity of relational structures. The given publi-
cation is a continuation of the author’s actions, aimed at creating a moderately universal application allowing to reproduce
the existing relational structures created with the use of different relational database management systems (RDBMS),
namely SQL Server, MySQL or Oracle into graph form on the level of Neo4j graph database. This form makes it possible to
thoroughly recognize complex relational structures with the use of queries prepared in Cypher language in native client,
which is made available from the level of the created application. During the construction process of the presented tool,
technologies such as ADO.NET, graph database Neo4j together with available programming interface as well proper tables
containing metadata were utilized.
Key words: mapping, relational structure, graph structure, database, neo4j

MAPOWANIE STRUKTUR RELACYJNYCH W BAZIE GRAFOWEJ NEO 4J

Streszczenie

Rozbudowa funkcjonalności większości aplikacji, w tym również wspomagających rolnictwo z reguły wymaga pełnej znajo-
mości struktur relacyjnych tworzących bazy danych, co czasami może być trudne do osiągnięcia. Powodem może być brak
pełnej dokumentacji technicznej oraz względnie duża złożoność struktur relacyjnych. Prezentowana publikacja, to kontynu-
acja działań autorów, zmierzająca do wytworzenia w miarę uniwersalnej aplikacji, pozwalającej na odwzorowanie istnieją-
cych struktur relacyjnych, powstałych przy wykorzystaniu różnych systemów bazodanowych SQL Server, MySQL oraz
Oracle, do postaci grafowej na poziomie Neo4j. Ta postać umożliwia wygodne, dogłębne rozpoznawanie złożonej struktury
relacyjnej za pomocą pytań konstruowanych w języku Cypher w natywnym programie klienckim udostępnianym z poziomu
prezentowanej aplikacji. W procesie budowy prezentowanego narzędzia wykorzystano technologie ADO.NET, bazę grafową
Neo4j wraz z dostępnym interfejsem programistycznym oraz odpowiednie tabele zawierające metadane.
Słowa kluczowe: mapowanie, struktura relacyjna, struktura grafowa, baza danych, neo4j

1. Introduction and available technologies

 Extension of functionality of applications supporting
broadly defined agriculture, independent of the way of reali-
zation, as a general rule involves recognition and modifica-
tion of relational structure of database, with which the given
application works in tandem. The recognition of those struc-
tures without possessing documentations and with a large
number of defined tables and relations between them, is often
not an easy case. The existing tool, dedicated to specific sys-
tems of databases do make it possible to search relations be-
tween tables in a quick way. Making an endeavor to solve
this problem was previously a subject matter of authors in-
quiries, which was expressed in publication [7]. Mentioned
publication presents the mechanism of reproducing relational
structures created on the level SQL Server together with de-
fined relations into the graph form on the level of Neo4j [5].
This in turn made it possible to make use of Cypher language
paying special attention to searching relations between tables,
which are represented on the level of graph database with the
use of directed edges [1]. The limitation of the proposed so-
lution was narrowing to single SQL Server environment, re-
sulting from the use of defined classes within the namespace
Microsoft.SqlServer.Management.Smo [2]. The objects cre-
ated on the above basis made it possible for us to recognize
database structure managed by the given SQL Server, while
delivering necessary metadata at the same time. They were
related with database selected by user.

 A new, alternative approach, proposed by us, having
more universal character, utilizes the technology called
ADO.NET by Microsoft, which contains in itself numerous
techniques of access to databases controlled by different
database management systems (DBMS) [3]. Depending on
the offer by specific producer of DBMS, in total we can
make use of ODBC driver, OLEDB technology or native
classes for the given database environment during the proc-
ess. In addition to the above, the three mentioned solutions
were presented in chronological order. From the point of
view of efficiency, the last solution is preferable to the two
remaining ones on condition that it is available. In general
within each of the signaled techniques we can realize both
connection-oriented and non-connection-oriented model.
Connection is the key object in both models, enabling
communication with DBMS, created openly by program-
mer or generated without programmer [8]. It offers a num-
ber of methods, but the function from the point of view of
receiving information about metadata is function called
GetSchema [12].
 Information about relational structures that has been ob-
tained as well as openly defined relations in the form of
foreign keys will constitute the basis in the process of creat-
ing graphs on the level Neo4j [6]. Querying the existing
base mapping only relational structure can be solely real-
ized in client application offered by the producer of Neo4j
or through additional functionality, which is yet to be im-
plemented in the information system being under construc-

Wojciech MUELLER, Przemysław IDZIASZEK, Sebastian KUJAWA, „Journal of Research and Applications in Agricultural Engineering” 2018, Vol. 63(4)
Mateusz ŁUKOMSKI, Przemysław NOWAK 122

tion [9]. The process of reproducing relational structures in
the form of graphs is possible through making program-
ming interfaces available to .NET environment [14]. One of
the earlier programming interfaces based on protocol HTTP
(Hyper Transfer Protocol) is Neo4j.Client. It offers an ap-
proach type REST (Representational State Transfer), which
means transformation of requests included in protocol
HTTP, for operations such as creating, reading, updating
and deleting data (CRUD) within their source [27]. At pre-
sent, a more modern API (Application Programing Inter-
face) called Neo4.jDriver is also available, which by con-
trast is based on network protocol Bolt [11]. It is character-
ized by generating less network traffic, which from the
point of view of the aim of this paper, which is extension of
application directed to expanding database environments
being subject to metadata penetration, is of secondary im-
portance [26]. In the application, which is under construc-
tion, we will solely deal with transfer of metadata, which as
a general rule is less numerous that data themselves.

2. Application RELATIONS-Graph-v2

 The process of designing application was proceeded in UML
notation and it also entailed making another assumptions [4].
Apart from the previous selection of programming interface, en-
suring access to data in the form of ADO.NET technology, the
relational set DBMS was narrowed down to three [18]. The
three database environments, namely MS SQL, Oracle and
MySQL were considered to be relatively representative. It
seemed pretty obvious that the main obstacle on the way to en-
suring rather universal character of this application results from a
diversified way of gathering metadata providing information
about relational structure, and not the way of mapping them in
the graph database [21]. As it has already been mentioned, the
object called Connection, equipped, among other things, in the
method called GetSchema is the necessary and key object ena-
bling the operation of gathering data [16]. The use of this
method of object combined with proper argumentation allows to
gather different informations about all databases, including the
system ones, which are managed by database system, as well as
in the tables creating a given database, which can be seen in the
following code - Fig. 1.
 The data taken over are transferred to the object
DataTable, which after being mapped into collection imple-

menting interface IEnumerable constitutes source enabling to
question them with the use of LINQ technology. This way of
proceedings with the use of ADO.NET was successfully used
with reference to MS SQL Server and MySQL [20]. Striving
after ensuring universal character of this application induced
authors to make and endeavor to utilize the method of object
Connection on a wider scale through inputting other argu-
ments [24]. Utilizing the argument called ForeignKeys in the
form of chain, as well as using additional argument in the
form of limit table did not give the expected results [23]. In
the package of return information there is direct lack of refer-
ential informations, which are necessary in the process of
creating edges in Neo4j database. Another deficiency is that
the given collection and, as a matter of fact, its name are not
accepted as the argument of GetSchema method on the level
of older techniques such as ODBC and OLEDB. Some addi-
tional complications occurred while trying to use this method
with reference to collection called Columns [13]. The re-
turned results did not meet the author’s expectations.
 Alternative approach, characterized by much bigger ca-
pabilities involves the use of INFORMATION_SCHEMA
included in the standard SQL-92, behind which there is a
set of tables containing metadata [19]. In case of both
DBMS MySQL and MS SQL Server we can say about con-
formity with the aforementioned standard in this issue [25].
By utilizing the aforesaid tables we can partially resign
from the method GetSchema. In order to gather necessary
information about metadata, we need to reach for the fol-
lowing tables INFORMATION_SCHEMA.TABLES,
INFORMATION_SCHEMA.COLUMNS, INFORMA-
TION_SCHEMA.CONSTRAINT_COLUMN_USAGE and
INFORMATION_SCHEMA.REFERENTIAL_CONSTRAINTS.
 Fragment of code seen in Fig. 2., is an example of query
returning all set of information characterized by defined re-
lations.
 In case of our actions we need to use a wider array of
classes creating ADO.NET. The necessary SQL queries can
be sent to both the Command object and DataAdapter alter-
natively, which in consequence will determine the methods
to be used later [22]. A slightly different scenario of con-
duct was utilized in case of Oracle database system. In this
particular case, the basis for gathering all information about
relational structure were its queries addressed to views con-
taining metadata, which is illustrated in Fig. 3.

Source: own study / Źródło: opracowanie własne

Fig. 1. Gathering information about databases managed by a selected instance MySQL
Rys. 1. Zdobywanie informacji o bazach danych zarządzanych przez wybraną instancję MySQL

Wojciech MUELLER, Przemysław IDZIASZEK, Sebastian KUJAWA, „Journal of Research and Applications in Agricultural Engineering” 2018, Vol. 63(4)
Mateusz ŁUKOMSKI, Przemysław NOWAK 123

Source: own study / Źródło: opracowanie własne

Fig. 2. SQL query returning information characterized by defined relations between tables
Rys. 2. Zapytanie SQL zwracające informacje o zdefiniowanych powiązaniach pomiędzy tabelami

Source: own study / Źródło: opracowanie własne

Fig. 3. SQL query addressed to DBMS Oracle, including information about related tables
Rys. 3. Zapytanie SQL skierowane do SZBD Oracle, zwracającego informacje o powiązanych tabelach

Source: own study / Źródło: opracowanie własne

Fig. 4. Creating nodes and edges in Neo4j with the use of language C# and programming interface GraphClient
Rys. 4. Tworzenie węzłów i krawędzi w Neo4j przy użyciu języka C# i interfejsu programistycznego GraphClient

 Another actions of the application, now independent of
relational system chosen by the user, entailed reproduction
of information about database structures in the form of
graphs on the level Neo4j [17]. This entry data embedded in
objects DataTables were suitably converted into the form
of nodes and edges with the use of two separate methods
utilizing partly different objects, which the following frag-
ment of code illustrates - Fig. 4.
 The above actions of code included in the methods are
coerced by the user’s choices made in hierarchical way on
the level of form, which is presented in Fig. 5.
 At first, the user determines data supplier, on that basis,
the user gains information about instances of database
server installed locally. Then, the user makes a proper se-
lection or alternatively writes connection chain in case of

servers localized remotely. This in turn enables the choice
of base, and then tables and recognized connections be-
tween them, which will be reproduced in graph structures.
Location of the graph data is determined in neighboring text
field [27]. The above operations constitute the basis for ini-
tiating methods creating the graph structures required by us.
We create them by pressing the button „Generate RDB
structure in GDB”. The above form, through indicator light
WebBrowser makes available for us program client called
Neo4j, allowing querying graph database. The questions
entered in Cypher language, allow us to search the data-
base, which came into existence, from the perspective of
gathering information about reconstructed relational struc-
ture [15]. The results are presented in a comfortable way in
the form of graph.

Wojciech MUELLER, Przemysław IDZIASZEK, Sebastian KUJAWA, „Journal of Research and Applications in Agricultural Engineering” 2018, Vol. 63(4)
Mateusz ŁUKOMSKI, Przemysław NOWAK 124

Source: own study / Źródło: opracowanie własne

Fig. 5. The application interface with results of querying the graph base representing a given relational structure
Rys. 5. Interfejs aplikacji z wynikami odpytywania bazy grafowej, reprezentującej wybraną strukturę relacyjną

3. Conclusions

 The presented application constitutes continuation of
previous actions taken by authors, resulting from limita-
tions of the existing tools used to recognize and search, not
allowing at the same time clear visualization of complex
relational structures we are interested in. Currently offered
solution has more universal character, since it does not only
refers to single RDBMS, which is MS SQL Server. Cur-
rently designed and created application enables reconstruc-
tion of relational structures created on the level SQL
Server, MySQL or Oracle in the graph form with the use of
Neo4j. It was possible to achieve through the use of
ADO.NET technology combined with the use of tables in-
cluding metadata created and modified by DBMS. Access
programming interface for the graph database Neo4 was
another component which was utilized. The mapped rela-
tional structure in the form of graph can be subject to que-
ries formulated in the language Cypher in order to get to
know it in more details.
 Increasing the level of universality of application is in-
separably connected with its further extension and is largely
dependent on the fact if another RDBMS included, imple-
ment standard SQL-92 from the perspective of INFOR-
MATION_SCHEMA.

4. References

[1] Celko J., Morgan Kaufman „Joe Celko’s Complete Guide to
NoSQL” 2013. ISBN: 978-0-12-407220-6.

[2] Dewson R., Apress „Beginning SQL Server for Developers,
4th Edition” 2014. ISBN: 978-1-484202-81-4.

[3] Ellis G., Packt Publishing „Getting Started with SQL Server
2014 Administration” 2014. ISBN: 978-1-782-17241-3.

[4] Fowler A., Wiley „NoSQL For Dummies” 2015. ISBN: 978-
1-118-90574-6.

[5] Goel A., Packt Publishing „Neo4j Cookbook” 2015. ISBN:
978-1-78328-725-3.

[6] Gupta S., Packt Publishing „Neo4j Essentials” 2015. ISBN:
978-1-78355-517-8.

[7] Idziaszek P., Mueller W., Rudowicz-Nawrocka J.,
Gruszczyński M., Kujawa S., Górna K., Balcerzak K.: Visu-
alisation of Relational Database Structure by Graph Database.
CMST, 2016, Vol. 22 (4), 217-224.

[8] Johnson E., Jones J., Addison-Wesley „A Developer's Guide
to Data Modeling for SQL Server” 2008. ISBN: 978-0-321-
49764-2.

[9] Jordan G., Apress „Practical Neo4j” 2015. ISBN: 978-1-
484200-23-0.

[10] Kreigel A., Wrox „Discovering SQL” 2011. ISBN: 978-1-
4571-0657-6.

[11] Lal M., Packt Publishing „Neo4j Graph Data Modeling”
2015. ISBN: 978-1-78439-730-2.

[12] Masood-Al.-Faroog B.A., Packt Publishing „SQL Server
2014 Development Essentials” 2014. ISBN: 978-1-78217-
255-0.

[13] Naboulsi Z., Ford S., Microsoft Press „Coding Faster: Getting
More Productive with Microsoft Visual Studio” 2011. ISBN:
978-0-73564-992-7.

[14] Oppel A., McGraw-Hill „Data Modeling” 2009. ISBN: 978-
0-07-162398-8.

[15] Panazarino O., Packt Publishing „Learning Cypher” 2014.
ISBN: 978-1-78328-775-8.

[16] Powell J., Chandos Publishing „A Librarian's Guide to
Graphs, Data and the Semantic Web” 2015. ISBN: 978-1-
78063-434-0.

[17] Raj S., Packt Publishing „Neo4j High Performance” 2015.
ISBN: 978-1-78355-516-1.

[18] Redmon E., Wilson J.R., O’Reilly Media „Seven Databases
in Seven Weeks” 2012. ISBN: 978-1-934356-92-0.

[19] Robinson I., Webber J., Eifrem E., O’Reilly Media „Graph
Databases” 2013. ISBN:978-1-449-35626-2.

[20] Robinson I., Webber J., Eifrem E., O’Reilly Media „Graph
Databases Second Edition” 2015. ISBN:978-1-491-93200-1.

[21] Sadalage P.J., Fowler M., Pearson Education „NoSQL Dis-
tilled: A Brief Guide to the Emerging World of Polyglot Per-
sistence” 2013. ISBN:978-0321826626.

[22] Schmalz M., O’Reilly Media „C# Database Basics” 2012.
ISBN: 978-1-4493-0998-5.

[23] Sideris Courseware Corp. „Data Modeling: Logical Database
Design” 2011. ISBN: 978-1-936930-19-7.

[24] Tiwari S., Wrox „Professional NoSQL” 2011. ISBN: 978-1-
4571-0685-9.

[25] Vaish G., Packt Publishing „Getting Started with NoSQL”
2013. ISBN: 978-1-84969-498-8.

[26] Van Bruggen R., Packt Publishing „Learning Neo4j” 2014.
ISBN: 978-1-84951-716-4.

[27] Vucotic A., Watt N., Abedrabbo T., Fox D., Partner J., Man-
ning „Neo4j in Action” 2014. ISBN: 978-1-61729-076-3.

